IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v343y2019icp268-272.html
   My bibliography  Save this article

Nordhaus–Gaddum type results for graph irregularities

Author

Listed:
  • Ma, Yuede
  • Cao, Shujuan
  • Shi, Yongtang
  • Dehmer, Matthias
  • Xia, Chengyi

Abstract

A graph whose vertices have the same degree is called regular. Otherwise, the graph is irregular. In fact, various measures of irregularity have been proposed and examined. For a given graph G=(V,E) with V={v1,v2,…,vn} and edge set E(G), di is the vertex degree where 1 ≤ i ≤ n. The irregularity of G is defined by irr(G)=∑vivj∈E(G)|di−dj|. A similar measure can be defined by irr2(G)=∑vivj∈E(G)(di−dj)2. The total irregularity of G is defined by irrt(G)=12∑vi,vj∈V(G)|di−dj|. The variance of the vertex degrees is defined var(G)=1n∑i=1ndi2−(2mn)2. In this paper, we present some Nordhaus–Gaddum type results for these measures and draw conclusions.

Suggested Citation

  • Ma, Yuede & Cao, Shujuan & Shi, Yongtang & Dehmer, Matthias & Xia, Chengyi, 2019. "Nordhaus–Gaddum type results for graph irregularities," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 268-272.
  • Handle: RePEc:eee:apmaco:v:343:y:2019:i:c:p:268-272
    DOI: 10.1016/j.amc.2018.09.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318308440
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.09.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Shujuan & Dehmer, Matthias, 2015. "Degree-based entropies of networks revisited," Applied Mathematics and Computation, Elsevier, vol. 261(C), pages 141-147.
    2. Cao, Shujuan & Dehmer, Matthias & Kang, Zhe, 2017. "Network Entropies Based on Independent Sets and Matchings," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 265-270.
    3. Lei, Hui & Li, Tao & Ma, Yuede & Wang, Hua, 2018. "Analyzing lattice networks through substructures," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 297-314.
    4. Shi, Yongtang, 2015. "Note on two generalizations of the Randić index," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 1019-1025.
    5. Lan, Yongxin & Li, Tao & Ma, Yuede & Shi, Yongtang & Wang, Hua, 2018. "Vertex-based and edge-based centroids of graphs," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 445-456.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Xiaoxiao & Sun, Shiwen & Wang, Jiawei & Xia, Chengyi, 2019. "Onion structure optimizes attack robustness of interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Guihai & Qu, Hui, 2018. "The coefficients of the immanantal polynomial," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 38-44.
    2. Lan, Yongxin & Li, Tao & Wang, Hua & Xia, Chengyi, 2019. "A note on extremal trees with degree conditions," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 70-79.
    3. Ghorbani, Modjtaba & Dehmer, Matthias & Rajabi-Parsa, Mina & Emmert-Streib, Frank & Mowshowitz, Abbe, 2019. "Hosoya entropy of fullerene graphs," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 88-98.
    4. Cai, Qingqiong & Cao, Fuyuan & Li, Tao & Wang, Hua, 2018. "On distances in vertex-weighted trees," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 435-442.
    5. Lan, Yongxin & Li, Tao & Ma, Yuede & Shi, Yongtang & Wang, Hua, 2018. "Vertex-based and edge-based centroids of graphs," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 445-456.
    6. Li, Yinkui & Gu, Ruijuan, 2018. "Bounds for scattering number and rupture degree of graphs with genus," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 329-334.
    7. Tratnik, Niko, 2018. "On the Steiner hyper-Wiener index of a graph," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 360-371.
    8. Cao, Shujuan & Dehmer, Matthias & Kang, Zhe, 2017. "Network Entropies Based on Independent Sets and Matchings," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 265-270.
    9. Hua, Hongbo & Das, Kinkar Ch., 2016. "On the Wiener polarity index of graphs," Applied Mathematics and Computation, Elsevier, vol. 280(C), pages 162-167.
    10. Su, Guifu & Tu, Jianhua & Das, Kinkar Ch., 2015. "Graphs with fixed number of pendent vertices and minimal Zeroth-order general Randić index," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 705-710.
    11. Du, Zhibin, 2017. "Further results regarding the sum of domination number and average eccentricity," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 299-309.
    12. Ali, Akbar & Raza, Zahid & Bhatti, Akhlaq Ahmad, 2016. "Bond incident degree (BID) indices of polyomino chains: A unified approach," Applied Mathematics and Computation, Elsevier, vol. 287, pages 28-37.
    13. Noureen, Sadia & Bhatti, Akhlaq Ahmad & Ali, Akbar, 2021. "Towards the solution of an extremal problem concerning the Wiener polarity index of alkanes," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    14. Li, Fengwei & Ye, Qingfang & Broersma, Hajo & Ye, Ruixuan & Zhang, Xiaoyan, 2021. "Extremality of VDB topological indices over f–benzenoids with given order," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    15. Wang, Juan & Li, Chao & Xia, Chengyi, 2018. "Improved centrality indicators to characterize the nodal spreading capability in complex networks," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 388-400.
    16. Wang, Ligong & Wang, Qi & Huo, Bofeng, 2016. "Integral trees with diameter four," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 53-64.
    17. Li, Fengwei & Ye, Qingfang & Sun, Yuefang, 2017. "On edge-rupture degree of graphs," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 282-293.
    18. Liu, Xiaoxiao & Sun, Shiwen & Wang, Jiawei & Xia, Chengyi, 2019. "Onion structure optimizes attack robustness of interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    19. Cui, Qing & Zhong, Lingping, 2017. "The general Randić index of trees with given number of pendent vertices," Applied Mathematics and Computation, Elsevier, vol. 302(C), pages 111-121.
    20. Wan, Pengfei & Tu, Jianhua & Dehmer, Matthias & Zhang, Shenggui & Emmert-Streib, Frank, 2019. "Graph entropy based on the number of spanning forests of c-cyclic graphs," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:343:y:2019:i:c:p:268-272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.