IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v334y2018icp388-400.html
   My bibliography  Save this article

Improved centrality indicators to characterize the nodal spreading capability in complex networks

Author

Listed:
  • Wang, Juan
  • Li, Chao
  • Xia, Chengyi

Abstract

In this paper, we deeply investigate the identification of influential spreaders in complex networks based on various centrality indices. At first, we introduce several frequently used centrality indices to characterize the node influence. Then, based on the standard SIR model, we integrate various centrality indicators into the characterization of the nodal spreading capability, and then starting from the gravitational centrality formula, we systematically compare the ranking similarity and monotonicity under various centrality algorithms over 6 real-world networks and Barabási-Albert model networks. The extensive simulations indicate that the mixed measure of gravitational centrality combining the k−shell value and degree will display the best performance as far as the ranking results are concerned, in which the focal node used the k−shell value as his mass while his neighboring nodes viewed the degree value as their masses. The current results are beneficial for us to develop the effective methods to discover and protect the significant nodes within many networked systems.

Suggested Citation

  • Wang, Juan & Li, Chao & Xia, Chengyi, 2018. "Improved centrality indicators to characterize the nodal spreading capability in complex networks," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 388-400.
  • Handle: RePEc:eee:apmaco:v:334:y:2018:i:c:p:388-400
    DOI: 10.1016/j.amc.2018.04.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318303461
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.04.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gert Sabidussi, 1966. "The centrality index of a graph," Psychometrika, Springer;The Psychometric Society, vol. 31(4), pages 581-603, December.
    2. Dawei Zhao & Lianhai Wang & Shudong Li & Zhen Wang & Lin Wang & Bo Gao, 2014. "Immunization of Epidemics in Multiplex Networks," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-5, November.
    3. Cao, Shujuan & Dehmer, Matthias & Kang, Zhe, 2017. "Network Entropies Based on Independent Sets and Matchings," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 265-270.
    4. Li, Chao & Wang, Li & Sun, Shiwen & Xia, Chengyi, 2018. "Identification of influential spreaders based on classified neighbors in real-world complex networks," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 512-523.
    5. Xia, Cheng-yi & Wang, Zhen & Sanz, Joaquin & Meloni, Sandro & Moreno, Yamir, 2013. "Effects of delayed recovery and nonuniform transmission on the spreading of diseases in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(7), pages 1577-1585.
    6. Bae, Joonhyun & Kim, Sangwook, 2014. "Identifying and ranking influential spreaders in complex networks by neighborhood coreness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 549-559.
    7. Chen, Duanbing & Lü, Linyuan & Shang, Ming-Sheng & Zhang, Yi-Cheng & Zhou, Tao, 2012. "Identifying influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1777-1787.
    8. Ma, Ling-ling & Ma, Chuang & Zhang, Hai-Feng & Wang, Bing-Hong, 2016. "Identifying influential spreaders in complex networks based on gravity formula," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 205-212.
    9. Dangalchev, Chavdar, 2006. "Residual closeness in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 365(2), pages 556-564.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Min & Li, Wanchun & Guo, Yuning & Peng, Xiaoyan & Li, Yingxiang, 2020. "Identifying influential spreaders in complex networks based on improved k-shell method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    2. Namtirtha, Amrita & Dutta, Animesh & Dutta, Biswanath, 2018. "Identifying influential spreaders in complex networks based on kshell hybrid method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 310-324.
    3. Yu, Senbin & Gao, Liang & Xu, Lida & Gao, Zi-You, 2019. "Identifying influential spreaders based on indirect spreading in neighborhood," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 418-425.
    4. Zareie, Ahmad & Sheikhahmadi, Amir, 2019. "EHC: Extended H-index Centrality measure for identification of users’ spreading influence in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 141-155.
    5. Bao, Zhong-Kui & Ma, Chuang & Xiang, Bing-Bing & Zhang, Hai-Feng, 2017. "Identification of influential nodes in complex networks: Method from spreading probability viewpoint," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 391-397.
    6. Liu, Qiang & Zhu, Yu-Xiao & Jia, Yan & Deng, Lu & Zhou, Bin & Zhu, Jun-Xing & Zou, Peng, 2018. "Leveraging local h-index to identify and rank influential spreaders in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 379-391.
    7. Wang, Junyi & Hou, Xiaoni & Li, Kezan & Ding, Yong, 2017. "A novel weight neighborhood centrality algorithm for identifying influential spreaders in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 88-105.
    8. Li, Chao & Wang, Li & Sun, Shiwen & Xia, Chengyi, 2018. "Identification of influential spreaders based on classified neighbors in real-world complex networks," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 512-523.
    9. Liu, Ying & Tang, Ming & Zhou, Tao & Do, Younghae, 2016. "Identify influential spreaders in complex networks, the role of neighborhood," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 289-298.
    10. Yang, Xu-Hua & Xiong, Zhen & Ma, Fangnan & Chen, Xiaoze & Ruan, Zhongyuan & Jiang, Peng & Xu, Xinli, 2021. "Identifying influential spreaders in complex networks based on network embedding and node local centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    11. Xiaojian Ma & Yinghong Ma, 2019. "The Local Triangle Structure Centrality Method to Rank Nodes in Networks," Complexity, Hindawi, vol. 2019, pages 1-16, January.
    12. Mahyar, Hamidreza & Hasheminezhad, Rouzbeh & Ghalebi K., Elahe & Nazemian, Ali & Grosu, Radu & Movaghar, Ali & Rabiee, Hamid R., 2018. "Compressive sensing of high betweenness centrality nodes in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 166-184.
    13. Wang, Zhixiao & Zhao, Ya & Xi, Jingke & Du, Changjiang, 2016. "Fast ranking influential nodes in complex networks using a k-shell iteration factor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 171-181.
    14. Salavati, Chiman & Abdollahpouri, Alireza & Manbari, Zhaleh, 2018. "BridgeRank: A novel fast centrality measure based on local structure of the network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 635-653.
    15. Xu, Shuang & Wang, Pei, 2017. "Identifying important nodes by adaptive LeaderRank," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 654-664.
    16. Hu, Jianqiang & Yu, Jie & Cao, Jinde & Ni, Ming & Yu, Wenjie, 2014. "Topological interactive analysis of power system and its communication module: A complex network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 99-111.
    17. Liu, Panfeng & Li, Longjie & Fang, Shiyu & Yao, Yukai, 2021. "Identifying influential nodes in social networks: A voting approach," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    18. Huang, Wencheng & Li, Haoran & Yin, Yanhui & Zhang, Zhi & Xie, Anhao & Zhang, Yin & Cheng, Guo, 2024. "Node importance identification of unweighted urban rail transit network: An Adjacency Information Entropy based approach," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    19. Sheikhahmadi, Amir & Nematbakhsh, Mohammad Ali & Zareie, Ahmad, 2017. "Identification of influential users by neighbors in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 517-534.
    20. Sun, Hong-liang & Chen, Duan-bing & He, Jia-lin & Ch’ng, Eugene, 2019. "A voting approach to uncover multiple influential spreaders on weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 303-312.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:334:y:2018:i:c:p:388-400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.