IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0110540.html
   My bibliography  Save this article

Numerical Evaluation and Comparison of Kalantari's Zero Bounds for Complex Polynomials

Author

Listed:
  • Matthias Dehmer
  • Yury Robertovich Tsoy

Abstract

In this paper, we investigate the performance of zero bounds due to Kalantari and Dehmer by using special classes of polynomials. Our findings are evidenced by numerical as well as analytical results.

Suggested Citation

  • Matthias Dehmer & Yury Robertovich Tsoy, 2014. "Numerical Evaluation and Comparison of Kalantari's Zero Bounds for Complex Polynomials," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-10, October.
  • Handle: RePEc:plo:pone00:0110540
    DOI: 10.1371/journal.pone.0110540
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0110540
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0110540&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0110540?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Matthias Dehmer & Abbe Mowshowitz & Yongtang Shi, 2014. "Structural Differentiation of Graphs Using Hosoya-Based Indices," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-4, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lang, Rongling & Li, Tao & Mo, Desen & Shi, Yongtang, 2016. "A novel method for analyzing inverse problem of topological indices of graphs using competitive agglomeration," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 115-121.
    2. Ghorbani, Modjtaba & Hakimi-Nezhaad, Mardjan & Dehmer, Matthias, 2022. "Novel results on partial hosoya polynomials: An application in chemistry," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    3. Cao, Shujuan & Dehmer, Matthias & Kang, Zhe, 2017. "Network Entropies Based on Independent Sets and Matchings," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 265-270.
    4. Chen, Lin & Liu, Jinfeng, 2016. "Extremal values of matching energies of one class of graphs," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 976-992.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0110540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.