IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v284y2016icp260-267.html
   My bibliography  Save this article

Digraphs with large maximum Wiener index

Author

Listed:
  • Knor, Martin
  • Škrekovski, Riste
  • Tepeh, Aleksandra

Abstract

Recently the concept of Wiener index was extended to digraphs which are not-necessarily strongly connected, and it was shown that some fundamental results extend naturally within this concept. This extension could be applicable in the topics of directed large networks, particularly because with this measure, one assigns finite values to the average distance and betweenness centrality of the nodes in a directed network. It is not hard to show that among digraphs on n vertices, the directed cycle C→n achieves the maximum Wiener index. Next, we investigate digraphs with the second maximum Wiener index. One can consider this problem in the realm of all digraphs or restricted to those obtained by directing undirected graphs, so called antisymmetric digraphs. In both situations, we obtain that such digraphs are constructed from C→n (n ≥ 6) by adding a single arc. We conclude the paper with consideration for possible further works.

Suggested Citation

  • Knor, Martin & Škrekovski, Riste & Tepeh, Aleksandra, 2016. "Digraphs with large maximum Wiener index," Applied Mathematics and Computation, Elsevier, vol. 284(C), pages 260-267.
  • Handle: RePEc:eee:apmaco:v:284:y:2016:i:c:p:260-267
    DOI: 10.1016/j.amc.2016.03.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300316301990
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2016.03.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Knor, Martin & Škrekovski, Riste & Tepeh, Aleksandra, 2016. "Some remarks on Wiener index of oriented graphs," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 631-636.
    2. Cao, Shujuan & Dehmer, Matthias, 2015. "Degree-based entropies of networks revisited," Applied Mathematics and Computation, Elsevier, vol. 261(C), pages 141-147.
    3. Dehmer, Matthias & Emmert-Streib, Frank & Shi, Yongtang, 2015. "Graph distance measures based on topological indices revisited," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 623-633.
    4. Knor, Martin & Škrekovski, Riste & Tepeh, Aleksandra, 2015. "An inequality between the edge-Wiener index and the Wiener index of a graph," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 714-721.
    5. Li, Xueliang & Qin, Zhongmei & Wei, Meiqin & Gutman, Ivan & Dehmer, Matthias, 2015. "Novel inequalities for generalized graph entropies – Graph energies and topological indices," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 470-479.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji, Shengjin & Liu, Mengmeng & Wu, Jianliang, 2018. "A lower bound of revised Szeged index of bicyclic graphs," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 480-487.
    2. Hriňáková, Katarína & Knor, Martin & Škrekovski, Riste, 2019. "An inequality between variable wiener index and variable szeged index," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andova, Vesna & Orlić, Damir & Škrekovski, Riste, 2017. "Leapfrog fullerenes and Wiener index," Applied Mathematics and Computation, Elsevier, vol. 309(C), pages 281-288.
    2. Ghorbani, Modjtaba & Dehmer, Matthias & Rajabi-Parsa, Mina & Emmert-Streib, Frank & Mowshowitz, Abbe, 2019. "Hosoya entropy of fullerene graphs," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 88-98.
    3. Knor, Martin & Majstorović, Snježana & Škrekovski, Riste, 2018. "Graphs preserving Wiener index upon vertex removal," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 25-32.
    4. Ghorbani, Modjtaba & Dehmer, Matthias & Zangi, Samaneh, 2018. "Graph operations based on using distance-based graph entropies," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 547-555.
    5. Spiro, Sam, 2022. "The Wiener index of signed graphs," Applied Mathematics and Computation, Elsevier, vol. 416(C).
    6. Ma, Yuede & Cao, Shujuan & Shi, Yongtang & Dehmer, Matthias & Xia, Chengyi, 2019. "Nordhaus–Gaddum type results for graph irregularities," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 268-272.
    7. Milovanović, Igor & Milovanović, Emina & Gutman, Ivan, 2016. "Upper bounds for some graph energies," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 435-443.
    8. Modjtaba Ghorbani & Matthias Dehmer & Frank Emmert-Streib, 2020. "Properties of Entropy-Based Topological Measures of Fullerenes," Mathematics, MDPI, vol. 8(5), pages 1-23, May.
    9. Črepnjak, Matevž & Tratnik, Niko, 2017. "The Szeged index and the Wiener index of partial cubes with applications to chemical graphs," Applied Mathematics and Computation, Elsevier, vol. 309(C), pages 324-333.
    10. Ni, Chengzhang & Yang, Jun & Kong, Demei, 2020. "Sequential seeding strategy for social influence diffusion with improved entropy-based centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    11. Choi, Hayoung & Lee, Hosoo & Shen, Yifei & Shi, Yuanming, 2019. "Comparing large-scale graphs based on quantum probability theory," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 1-15.
    12. Liu, Muhuo & Das, Kinkar Ch., 2018. "On the ordering of distance-based invariants of graphs," Applied Mathematics and Computation, Elsevier, vol. 324(C), pages 191-201.
    13. Das, Kinkar Ch. & Mojallal, Seyed Ahmad & Gutman, Ivan, 2015. "On Laplacian energy in terms of graph invariants," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 83-92.
    14. Das, Kinkar Ch. & Mojallal, Seyed Ahmad, 2016. "Extremal Laplacian energy of threshold graphs," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 267-280.
    15. Das, Kinkar Ch. & Mojallal, Seyed Ahmad & Gutman, Ivan, 2016. "On energy and Laplacian energy of bipartite graphs," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 759-766.
    16. Wen, Tao & Jiang, Wen, 2018. "An information dimension of weighted complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 388-399.
    17. Li, Hong-Hai & Wu, Qian-Qian & Gutman, Ivan, 2016. "On ordering of complements of graphs with respect to matching numbers," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 167-174.
    18. Chen, Zengqiang & Dehmer, Matthias & Shi, Yongtang, 2015. "Bounds for degree-based network entropies," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 983-993.
    19. Hriňáková, Katarína & Knor, Martin & Škrekovski, Riste, 2019. "An inequality between variable wiener index and variable szeged index," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    20. Dingyi Gan & Bin Yang & Yongchuan Tang, 2020. "An Extended Base Belief Function in Dempster–Shafer Evidence Theory and Its Application in Conflict Data Fusion," Mathematics, MDPI, vol. 8(12), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:284:y:2016:i:c:p:260-267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.