IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v331y2018icp445-456.html
   My bibliography  Save this article

Vertex-based and edge-based centroids of graphs

Author

Listed:
  • Lan, Yongxin
  • Li, Tao
  • Ma, Yuede
  • Shi, Yongtang
  • Wang, Hua

Abstract

The sum of distances between all pairs of vertices, better known as the Wiener index for its applications in Chemistry, has been extensively studied in the past decades. One of the most important properties related to distance between vertices, in the form of the middle part of a tree called the “centroid”, has been thoroughly analyzed. Also arised in the study of Chemical Graph Theory is the edge Wiener index which studies the distances between edges. Various problems on this concept have been proposed and investigated, along with its correlation to the original Wiener index. We extend the study to the middle part of a tree in this note, showing interesting and sometimes rather unexpected observations on the so-called “edge centroid”. We also shed some more light on the relations between these distance-based graph invariants by investigating the behaviors of different centroids and their differences. Such edge-centroids are also compared with the vertex-based analogues in both trees and graphs. This leads to challenging questions for future work in this direction.

Suggested Citation

  • Lan, Yongxin & Li, Tao & Ma, Yuede & Shi, Yongtang & Wang, Hua, 2018. "Vertex-based and edge-based centroids of graphs," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 445-456.
  • Handle: RePEc:eee:apmaco:v:331:y:2018:i:c:p:445-456
    DOI: 10.1016/j.amc.2018.03.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318302182
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.03.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Shujuan & Dehmer, Matthias & Kang, Zhe, 2017. "Network Entropies Based on Independent Sets and Matchings," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 265-270.
    2. Lei, Hui & Li, Tao & Ma, Yuede & Wang, Hua, 2018. "Analyzing lattice networks through substructures," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 297-314.
    3. Yu, Guihai & Liu, Xin & Qu, Hui, 2017. "Singularity of Hermitian (quasi-)Laplacian matrix of mixed graphs," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 287-292.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dobrynin, Andrey A., 2019. "Infinite family of 2-connected transmission irregular graphs," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 1-4.
    2. Li, Shuchao & Wang, Hua & Wang, Shujing, 2019. "Some extremal ratios of the distance and subtree problems in binary trees," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 232-245.
    3. Li, Yinkui & Gu, Ruijuan, 2018. "Bounds for scattering number and rupture degree of graphs with genus," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 329-334.
    4. Li, Fengwei & Ye, Qingfang & Broersma, Hajo & Ye, Ruixuan & Zhang, Xiaoyan, 2021. "Extremality of VDB topological indices over f–benzenoids with given order," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    5. Lan, Yongxin & Li, Tao & Wang, Hua & Xia, Chengyi, 2019. "A note on extremal trees with degree conditions," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 70-79.
    6. Yu, Guihai & Qu, Hui, 2018. "The coefficients of the immanantal polynomial," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 38-44.
    7. Ma, Yuede & Cao, Shujuan & Shi, Yongtang & Dehmer, Matthias & Xia, Chengyi, 2019. "Nordhaus–Gaddum type results for graph irregularities," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 268-272.
    8. Cai, Qingqiong & Cao, Fuyuan & Li, Tao & Wang, Hua, 2018. "On distances in vertex-weighted trees," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 435-442.
    9. Tratnik, Niko, 2018. "On the Steiner hyper-Wiener index of a graph," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 360-371.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Yuede & Cao, Shujuan & Shi, Yongtang & Dehmer, Matthias & Xia, Chengyi, 2019. "Nordhaus–Gaddum type results for graph irregularities," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 268-272.
    2. Lei, Hui & Li, Tao & Ma, Yuede & Wang, Hua, 2018. "Analyzing lattice networks through substructures," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 297-314.
    3. Yu, Guihai & Qu, Hui, 2018. "The coefficients of the immanantal polynomial," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 38-44.
    4. Noureen, Sadia & Bhatti, Akhlaq Ahmad & Ali, Akbar, 2021. "Towards the solution of an extremal problem concerning the Wiener polarity index of alkanes," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    5. Wang, Juan & Li, Chao & Xia, Chengyi, 2018. "Improved centrality indicators to characterize the nodal spreading capability in complex networks," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 388-400.
    6. Ghorbani, Modjtaba & Dehmer, Matthias & Rajabi-Parsa, Mina & Emmert-Streib, Frank & Mowshowitz, Abbe, 2019. "Hosoya entropy of fullerene graphs," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 88-98.
    7. Liu, Xiaoxiao & Sun, Shiwen & Wang, Jiawei & Xia, Chengyi, 2019. "Onion structure optimizes attack robustness of interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    8. Wan, Pengfei & Tu, Jianhua & Dehmer, Matthias & Zhang, Shenggui & Emmert-Streib, Frank, 2019. "Graph entropy based on the number of spanning forests of c-cyclic graphs," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    9. Cai, Qingqiong & Cao, Fuyuan & Li, Tao & Wang, Hua, 2018. "On distances in vertex-weighted trees," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 435-442.
    10. Ali, Akbar & Du, Zhibin & Ali, Muhammad, 2018. "A note on chemical trees with minimum Wiener polarity index," Applied Mathematics and Computation, Elsevier, vol. 335(C), pages 231-236.
    11. Wan, Pengfei & Tu, Jianhua & Zhang, Shenggui & Li, Binlong, 2018. "Computing the numbers of independent sets and matchings of all sizes for graphs with bounded treewidth," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 42-47.
    12. Guihai Yu & Hui Qu, 2018. "More on Spectral Analysis of Signed Networks," Complexity, Hindawi, vol. 2018, pages 1-6, October.
    13. Li, Yinkui & Gu, Ruijuan, 2018. "Bounds for scattering number and rupture degree of graphs with genus," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 329-334.
    14. Mikołaj Morzy & Tomasz Kajdanowicz & Przemysław Kazienko, 2017. "On Measuring the Complexity of Networks: Kolmogorov Complexity versus Entropy," Complexity, Hindawi, vol. 2017, pages 1-12, November.
    15. Tratnik, Niko, 2018. "On the Steiner hyper-Wiener index of a graph," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 360-371.
    16. Yu, Guihai & Qu, Hui & Dehmer, Matthias, 2017. "Principal minor version of Matrix-Tree theorem for mixed graphs," Applied Mathematics and Computation, Elsevier, vol. 309(C), pages 27-30.
    17. Sun, Chengbin & Luo, Chao, 2020. "Co-evolution of influence-based preferential selection and limited resource with multi-games on interdependent networks," Applied Mathematics and Computation, Elsevier, vol. 374(C).
    18. Cao, Shujuan & Dehmer, Matthias & Kang, Zhe, 2017. "Network Entropies Based on Independent Sets and Matchings," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 265-270.
    19. Lan, Yongxin & Li, Tao & Wang, Hua & Xia, Chengyi, 2019. "A note on extremal trees with degree conditions," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 70-79.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:331:y:2018:i:c:p:445-456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.