IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v363y2019ic26.html
   My bibliography  Save this article

Graph entropy based on the number of spanning forests of c-cyclic graphs

Author

Listed:
  • Wan, Pengfei
  • Tu, Jianhua
  • Dehmer, Matthias
  • Zhang, Shenggui
  • Emmert-Streib, Frank

Abstract

Graph entropies have been introduced to quantitatively measure the structural information content of graphs and networks; they have plenty of applications in various fields. Utilizing the number of subgraphs to establish measures for determining the complexity of molecular graphs are also prevalent in the study of mathematical chemistry. In this paper, we develop a new graph entropy measure that is based on the number of spanning forests. We prove explicit expressions for the entropy for trees, unicyclic and bicyclic graphs, and show that the cycle graph Cn attains the maximal value of the entropy for unicyclic graphs with order n and large cycle lengths. Based on generating numerical results, we conjecture extremal unicyclic graphs with respect to the entropy as well as we compare the values of our entropy for c-cyclic graphs, and generate graphs of bicyclic graphs and tricyclic graphs with 6 vertices for performing further research.

Suggested Citation

  • Wan, Pengfei & Tu, Jianhua & Dehmer, Matthias & Zhang, Shenggui & Emmert-Streib, Frank, 2019. "Graph entropy based on the number of spanning forests of c-cyclic graphs," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
  • Handle: RePEc:eee:apmaco:v:363:y:2019:i:c:26
    DOI: 10.1016/j.amc.2019.124616
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319306083
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.124616?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lavanya Sivakumar & Matthias Dehmer, 2012. "Towards Information Inequalities for Generalized Graph Entropies," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-14, June.
    2. Cao, Shujuan & Dehmer, Matthias & Kang, Zhe, 2017. "Network Entropies Based on Independent Sets and Matchings," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 265-270.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Yanni & Qiao, Shengning & Chen, Bing & Wan, Pengfei & Zhang, Shenggui, 2021. "Maximum values of degree-based entropies of bipartite graphs," Applied Mathematics and Computation, Elsevier, vol. 401(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Juan & Li, Chao & Xia, Chengyi, 2018. "Improved centrality indicators to characterize the nodal spreading capability in complex networks," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 388-400.
    2. Ghorbani, Modjtaba & Dehmer, Matthias & Rajabi-Parsa, Mina & Emmert-Streib, Frank & Mowshowitz, Abbe, 2019. "Hosoya entropy of fullerene graphs," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 88-98.
    3. Ma, Yuede & Cao, Shujuan & Shi, Yongtang & Dehmer, Matthias & Xia, Chengyi, 2019. "Nordhaus–Gaddum type results for graph irregularities," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 268-272.
    4. Lei, Hui & Li, Tao & Ma, Yuede & Wang, Hua, 2018. "Analyzing lattice networks through substructures," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 297-314.
    5. Yu, Guihai & Qu, Hui, 2018. "The coefficients of the immanantal polynomial," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 38-44.
    6. Wan, Pengfei & Tu, Jianhua & Zhang, Shenggui & Li, Binlong, 2018. "Computing the numbers of independent sets and matchings of all sizes for graphs with bounded treewidth," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 42-47.
    7. Lan, Yongxin & Li, Tao & Ma, Yuede & Shi, Yongtang & Wang, Hua, 2018. "Vertex-based and edge-based centroids of graphs," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 445-456.
    8. Carlos F Alvarez & Luis E Palafox & Leocundo Aguilar & Mauricio A Sanchez & Luis G Martinez, 2016. "Using Link Disconnection Entropy Disorder to Detect Fast Moving Nodes in MANETs," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-15, May.
    9. Mikołaj Morzy & Tomasz Kajdanowicz & Przemysław Kazienko, 2017. "On Measuring the Complexity of Networks: Kolmogorov Complexity versus Entropy," Complexity, Hindawi, vol. 2017, pages 1-12, November.
    10. Lan, Yongxin & Li, Tao & Wang, Hua & Xia, Chengyi, 2019. "A note on extremal trees with degree conditions," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 70-79.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:363:y:2019:i:c:26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.