IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v49y2011i3p397-413.html
   My bibliography  Save this article

Knapsack problem with probability constraints

Author

Listed:
  • Alexei Gaivoronski
  • Abdel Lisser
  • Rafael Lopez
  • Hu Xu

Abstract

This paper is dedicated to a study of different extensions of the classical knapsack problem to the case when different elements of the problem formulation are subject to a degree of uncertainty described by random variables. This brings the knapsack problem into the realm of stochastic programming. Two different model formulations are proposed, based on the introduction of probability constraints. The first one is a static quadratic knapsack with a probability constraint on the capacity of the knapsack. The second one is a two-stage quadratic knapsack model, with recourse, where we introduce a probability constraint on the capacity of the knapsack in the second stage. As far as we know, this is the first time such a constraint has been used in a two-stage model. The solution techniques are based on the semidefinite relaxations. This allows for solving large instances, for which exact methods cannot be used. Numerical experiments on a set of randomly generated instances are discussed below. Copyright Springer Science+Business Media, LLC. 2011

Suggested Citation

  • Alexei Gaivoronski & Abdel Lisser & Rafael Lopez & Hu Xu, 2011. "Knapsack problem with probability constraints," Journal of Global Optimization, Springer, vol. 49(3), pages 397-413, March.
  • Handle: RePEc:spr:jglopt:v:49:y:2011:i:3:p:397-413
    DOI: 10.1007/s10898-010-9566-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-010-9566-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-010-9566-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. Helmberg & F. Rendl & R. Weismantel, 2000. "A Semidefinite Programming Approach to the Quadratic Knapsack Problem," Journal of Combinatorial Optimization, Springer, vol. 4(2), pages 197-215, June.
    2. Rendl, F. & Sotirov, R., 2007. "Bounds for the quadratic assignment problem using the bundle method," Other publications TiSEM b6d298bc-77c9-4a6d-a043-5, Tilburg University, School of Economics and Management.
    3. Anton J. Kleywegt & Jason D. Papastavrou, 1998. "The Dynamic and Stochastic Knapsack Problem," Operations Research, INFORMS, vol. 46(1), pages 17-35, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agnès Gorge & Abdel Lisser & Riadh Zorgati, 2012. "Stochastic nuclear outages semidefinite relaxations," Computational Management Science, Springer, vol. 9(3), pages 363-379, August.
    2. Zahra Beheshti & Siti Shamsuddin & Siti Yuhaniz, 2013. "Binary Accelerated Particle Swarm Algorithm (BAPSA) for discrete optimization problems," Journal of Global Optimization, Springer, vol. 57(2), pages 549-573, October.
    3. Timonina-Farkas, Anna & Katsifou, Argyro & Seifert, Ralf W., 2020. "Product assortment and space allocation strategies to attract loyal and non-loyal customers," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1058-1076.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Zhang & Sriram Dasu & Reza Ahmadi, 2017. "Higher Prices for Larger Quantities? Nonmonotonic Price–Quantity Relations in B2B Markets," Management Science, INFORMS, vol. 63(7), pages 2108-2126, July.
    2. Sven Mallach, 2021. "Inductive linearization for binary quadratic programs with linear constraints," 4OR, Springer, vol. 19(4), pages 549-570, December.
    3. Diego Muñoz-Carpintero & Doris Sáez & Cristián E. Cortés & Alfredo Núñez, 2015. "A Methodology Based on Evolutionary Algorithms to Solve a Dynamic Pickup and Delivery Problem Under a Hybrid Predictive Control Approach," Transportation Science, INFORMS, vol. 49(2), pages 239-253, May.
    4. Schauer, Joachim, 2016. "Asymptotic behavior of the quadratic knapsack problem," European Journal of Operational Research, Elsevier, vol. 255(2), pages 357-363.
    5. Lv, Jian & Pang, Li-Ping & Wang, Jin-He, 2015. "Special backtracking proximal bundle method for nonconvex maximum eigenvalue optimization," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 635-651.
    6. Keumseok Kang & J. George Shanthikumar & Kemal Altinkemer, 2016. "Postponable Acceptance and Assignment: A Stochastic Dynamic Programming Approach," Manufacturing & Service Operations Management, INFORMS, vol. 18(4), pages 493-508, October.
    7. Kalyan Talluri & Garrett van Ryzin, 2000. "Revenue management under general discrete choice model of consumer behavior," Economics Working Papers 533, Department of Economics and Business, Universitat Pompeu Fabra, revised Oct 2001.
    8. Pak, K. & Piersma, N., 2002. "airline revenue management," ERIM Report Series Research in Management ERS-2002-12-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    9. So, Mee Chi & Thomas, Lyn C. & Huang, Bo, 2016. "Lending decisions with limits on capital available: The polygamous marriage problem," European Journal of Operational Research, Elsevier, vol. 249(2), pages 407-416.
    10. Pak, K. & Piersma, N., 2002. "Airline revenue management: an overview of OR techniques 1982-2001," Econometric Institute Research Papers EI 2002-03, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    11. N. Ito & S. Kim & M. Kojima & A. Takeda & K.-C. Toh, 2018. "Equivalences and differences in conic relaxations of combinatorial quadratic optimization problems," Journal of Global Optimization, Springer, vol. 72(4), pages 619-653, December.
    12. Soumia Ichoua & Michel Gendreau & Jean-Yves Potvin, 2006. "Exploiting Knowledge About Future Demands for Real-Time Vehicle Dispatching," Transportation Science, INFORMS, vol. 40(2), pages 211-225, May.
    13. Clifford Stein & Van-Anh Truong & Xinshang Wang, 2020. "Advance Service Reservations with Heterogeneous Customers," Management Science, INFORMS, vol. 66(7), pages 2929-2950, July.
    14. Jiming Peng & Tao Zhu & Hezhi Luo & Kim-Chuan Toh, 2015. "Semi-definite programming relaxation of quadratic assignment problems based on nonredundant matrix splitting," Computational Optimization and Applications, Springer, vol. 60(1), pages 171-198, January.
    15. Britta Schulze & Michael Stiglmayr & Luís Paquete & Carlos M. Fonseca & David Willems & Stefan Ruzika, 2020. "On the rectangular knapsack problem: approximation of a specific quadratic knapsack problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(1), pages 107-132, August.
    16. Shelby Brumelle & Darius Walczak, 2003. "Dynamic Airline Revenue Management with Multiple Semi-Markov Demand," Operations Research, INFORMS, vol. 51(1), pages 137-148, February.
    17. Alexandre d'Aspremont & Noureddine El Karoui, 2013. "Weak Recovery Conditions from Graph Partitioning Bounds and Order Statistics," Mathematics of Operations Research, INFORMS, vol. 38(2), pages 228-247, May.
    18. Klamroth, Kathrin & Wiecek, Margaret M., 2001. "A time-dependent multiple criteria single-machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 135(1), pages 17-26, November.
    19. Pak, K. & Dekker, R., 2004. "Cargo Revenue Management: Bid-Prices for a 0-1 Multi Knapsack Problem," ERIM Report Series Research in Management ERS-2004-055-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    20. Jihyeok Jung & Chan-Oi Song & Deok-Joo Lee & Kiho Yoon, 2024. "Optimal Mechanism in a Dynamic Stochastic Knapsack Environment," Papers 2402.14269, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:49:y:2011:i:3:p:397-413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.