IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v259y2015icp61-79.html
   My bibliography  Save this article

Role of additional food in eco-epidemiological system with disease in the prey

Author

Listed:
  • Sahoo, Banshidhar

Abstract

An eco-epidemiological system with disease in the prey incorporating additional food to predator is proposed. The main objective of this study is to show the role of additional food in an eco-epidemiological system. We analyze the proposed system by calculating two reproduction numbers. The dynamical behavior of the system is investigated from the point of view of stability and persistence both analytically and numerically. Using Pontryagin’s Maximum Principle, an optimal control problem is formulated and solved in presence of additional food to achieve the control of disease. Numerical results illustrate that there exists a critical infection rate above which disease free system can not be reached in absence of additional food. On the other hand suitable additional food has the capability to obtain a disease free system up to certain infection level. The system becomes disease free also in presence of seasonally varying infection rate providing suitable additional food to predator. This study introduces a new non-chemical method for controlling disease in eco-epidemiological system.

Suggested Citation

  • Sahoo, Banshidhar, 2015. "Role of additional food in eco-epidemiological system with disease in the prey," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 61-79.
  • Handle: RePEc:eee:apmaco:v:259:y:2015:i:c:p:61-79
    DOI: 10.1016/j.amc.2015.02.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315002180
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.02.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dawei Zhao & Lianhai Wang & Shudong Li & Zhen Wang & Lin Wang & Bo Gao, 2014. "Immunization of Epidemics in Multiplex Networks," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-5, November.
    2. Xia, Cheng-yi & Wang, Zhen & Sanz, Joaquin & Meloni, Sandro & Moreno, Yamir, 2013. "Effects of delayed recovery and nonuniform transmission on the spreading of diseases in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(7), pages 1577-1585.
    3. Lewi Stone & Ronen Olinky & Amit Huppert, 2007. "Seasonal dynamics of recurrent epidemics," Nature, Nature, vol. 446(7135), pages 533-536, March.
    4. Fukuda, Eriko & Kokubo, Satoshi & Tanimoto, Jun & Wang, Zhen & Hagishima, Aya & Ikegaya, Naoki, 2014. "Risk assessment for infectious disease and its impact on voluntary vaccination behavior in social networks," Chaos, Solitons & Fractals, Elsevier, vol. 68(C), pages 1-9.
    5. Mukhopadhyay, B. & Bhattacharyya, R., 2009. "Role of predator switching in an eco-epidemiological model with disease in the prey," Ecological Modelling, Elsevier, vol. 220(7), pages 931-939.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agus Suryanto & Isnani Darti & Syaiful Anam, 2017. "Stability Analysis of a Fractional Order Modified Leslie-Gower Model with Additive Allee Effect," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2017, pages 1-9, May.
    2. Mbava, W. & Mugisha, J.Y.T. & Gonsalves, J.W., 2017. "Prey, predator and super-predator model with disease in the super-predator," Applied Mathematics and Computation, Elsevier, vol. 297(C), pages 92-114.
    3. Chakraborty, Bhaskar & Ghorai, Santu & Bairagi, Nandadulal, 2020. "Reaction-diffusion predator-prey-parasite system and spatiotemporal complexity," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    4. Ghosh, Joydev & Sahoo, Banshidhar & Poria, Swarup, 2017. "Prey-predator dynamics with prey refuge providing additional food to predator," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 110-119.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Qiu & Li, MingChu & Lv, Lin & Guo, Cheng & Lu, Kun, 2017. "A new prediction model of infectious diseases with vaccination strategies based on evolutionary game theory," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 51-60.
    2. Wang, Juan & Li, Chao & Xia, Chengyi, 2018. "Improved centrality indicators to characterize the nodal spreading capability in complex networks," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 388-400.
    3. Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Evolutionary vaccination game approach in metapopulation migration model with information spreading on different graphs," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 41-55.
    4. Li, Chao & Wang, Li & Sun, Shiwen & Xia, Chengyi, 2018. "Identification of influential spreaders based on classified neighbors in real-world complex networks," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 512-523.
    5. Kabir, KM Ariful & Kuga, Kazuki & Tanimoto, Jun, 2020. "The impact of information spreading on epidemic vaccination game dynamics in a heterogeneous complex network- A theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    6. Wang, Xin-Wei & Chen, Zhen & Han, Chao, 2016. "Scheduling for single agile satellite, redundant targets problem using complex networks theory," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 125-132.
    7. Wang, Qingqing & Du, Chunpeng & Geng, Yini & Shi, Lei, 2020. "Historical payoff can not overcome the vaccination dilemma on Barabási–Albert scale-free networks," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    8. Benyun Shi & Guangliang Liu & Hongjun Qiu & Yu-Wang Chen & Shaoliang Peng, 2019. "Voluntary Vaccination through Perceiving Epidemic Severity in Social Networks," Complexity, Hindawi, vol. 2019, pages 1-13, February.
    9. Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Dynamical behaviors for vaccination can suppress infectious disease – A game theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 229-239.
    10. Kulsum, Umma & Alam, Muntasir & Kamrujjaman, Md., 2024. "Modeling and investigating the dilemma of early and delayed vaccination driven by the dynamics of imitation and aspiration," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    11. Zhang, Yan, 2013. "The impact of other-regarding tendencies on the spatial vaccination game," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 209-215.
    12. Xiang, Zhongyi & Tang, Sanyi & Xiang, Changcheng & Wu, Jianhong, 2015. "On impulsive pest control using integrated intervention strategies," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 930-946.
    13. Kabir, K.M. Ariful & Kuga, Kazuki & Tanimoto, Jun, 2019. "Effect of information spreading to suppress the disease contagion on the epidemic vaccination game," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 180-187.
    14. Basnarkov, Lasko, 2021. "SEAIR Epidemic spreading model of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    15. Wang, Jianwei & Xu, Wenshu & Chen, Wei & Yu, Fengyuan & He, Jialu, 2021. "Information sharing can suppress the spread of epidemics: Voluntary vaccination game on two-layer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    16. Okita, Kouki & Tatsukawa, Yuichi & Utsumi, Shinobu & Arefin, Md. Rajib & Hossain, Md. Anowar & Tanimoto, Jun, 2023. "Stochastic resonance effect observed in a vaccination game with effectiveness framework obeying the SIR process on a scale-free network," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    17. Pedro, S.A. & Rwezaura, H. & Mandipezar, A. & Tchuenche, J.M., 2021. "Qualitative Analysis of an influenza model with biomedical interventions," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    18. Ali, Zeeshan & Rabiei, Faranak & Hosseini, Kamyar, 2023. "A fractal–fractional-order modified Predator–Prey mathematical model with immigrations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 466-481.
    19. Zhu, Linhe & Huang, Xiaoyuan, 2021. "Modeling the dynamics of multi-cluster information propagation in presence of time delay," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    20. Wang, Xinyu & Jia, Danyang & Gao, Shupeng & Xia, Chengyi & Li, Xuelong & Wang, Zhen, 2020. "Vaccination behavior by coupling the epidemic spreading with the human decision under the game theory," Applied Mathematics and Computation, Elsevier, vol. 380(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:259:y:2015:i:c:p:61-79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.