IDEAS home Printed from https://ideas.repec.org/a/hin/jijmms/8273430.html
   My bibliography  Save this article

Stability Analysis of a Fractional Order Modified Leslie-Gower Model with Additive Allee Effect

Author

Listed:
  • Agus Suryanto
  • Isnani Darti
  • Syaiful Anam

Abstract

We analyze the dynamics of a fractional order modified Leslie-Gower model with Beddington-DeAngelis functional response and additive Allee effect by means of local stability. In this respect, all possible equilibria and their existence conditions are determined and their stability properties are established. We also construct nonstandard numerical schemes based on Grünwald-Letnikov approximation. The constructed scheme is explicit and maintains the positivity of solutions. Using this scheme, we perform some numerical simulations to illustrate the dynamical behavior of the model. It is noticed that the nonstandard Grünwald-Letnikov scheme preserves the dynamical properties of the continuous model, while the classical scheme may fail to maintain those dynamical properties.

Suggested Citation

  • Agus Suryanto & Isnani Darti & Syaiful Anam, 2017. "Stability Analysis of a Fractional Order Modified Leslie-Gower Model with Additive Allee Effect," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2017, pages 1-9, May.
  • Handle: RePEc:hin:jijmms:8273430
    DOI: 10.1155/2017/8273430
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/IJMMS/2017/8273430.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/IJMMS/2017/8273430.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/8273430?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Arenas, Abraham J. & González-Parra, Gilberto & Chen-Charpentier, Benito M., 2016. "Construction of nonstandard finite difference schemes for the SI and SIR epidemic models of fractional order," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 121(C), pages 48-63.
    2. Fathalla A. Rihan, 2013. "Numerical Modeling of Fractional-Order Biological Systems," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-11, August.
    3. Sahoo, Banshidhar, 2015. "Role of additional food in eco-epidemiological system with disease in the prey," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 61-79.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agus Suryanto & Isnani Darti & Hasan S. Panigoro & Adem Kilicman, 2019. "A Fractional-Order Predator–Prey Model with Ratio-Dependent Functional Response and Linear Harvesting," Mathematics, MDPI, vol. 7(11), pages 1-13, November.
    2. Liyun Lai & Zhenliang Zhu & Fengde Chen, 2020. "Stability and Bifurcation in a Predator–Prey Model with the Additive Allee Effect and the Fear Effect," Mathematics, MDPI, vol. 8(8), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mbava, W. & Mugisha, J.Y.T. & Gonsalves, J.W., 2017. "Prey, predator and super-predator model with disease in the super-predator," Applied Mathematics and Computation, Elsevier, vol. 297(C), pages 92-114.
    2. Agrawal, Khushbu & Kumar, Ranbir & Kumar, Sunil & Hadid, Samir & Momani, Shaher, 2022. "Bernoulli wavelet method for non-linear fractional Glucose–Insulin regulatory dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    3. Rihan, F.A. & Rajivganthi, C, 2020. "Dynamics of fractional-order delay differential model of prey-predator system with Holling-type III and infection among predators," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    4. Hoang, Manh Tuan, 2022. "Reliable approximations for a hepatitis B virus model by nonstandard numerical schemes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 32-56.
    5. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    6. Owolabi, Kolade M. & Atangana, Abdon, 2019. "Mathematical analysis and computational experiments for an epidemic system with nonlocal and nonsingular derivative," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 41-49.
    7. Khan, Aziz & Gómez-Aguilar, J.F. & Saeed Khan, Tahir & Khan, Hasib, 2019. "Stability analysis and numerical solutions of fractional order HIV/AIDS model," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 119-128.
    8. Naik, Parvaiz Ahmad & Zu, Jian & Owolabi, Kolade M., 2020. "Global dynamics of a fractional order model for the transmission of HIV epidemic with optimal control," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    9. R. Rakkiyappan & V. Preethi Latha & Fathalla A. Rihan, 2019. "A Fractional-Order Model for Zika Virus Infection with Multiple Delays," Complexity, Hindawi, vol. 2019, pages 1-20, November.
    10. Iqbal, Zafar & Ahmed, Nauman & Baleanu, Dumitru & Adel, Waleed & Rafiq, Muhammad & Aziz-ur Rehman, Muhammad & Alshomrani, Ali Saleh, 2020. "Positivity and boundedness preserving numerical algorithm for the solution of fractional nonlinear epidemic model of HIV/AIDS transmission," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    11. DAŞBAŞI, Bahatdin, 2020. "Stability analysis of the hiv model through incommensurate fractional-order nonlinear system," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    12. Ndenda, J.P. & Njagarah, J.B.H. & Shaw, S., 2021. "Role of immunotherapy in tumor-immune interaction: Perspectives from fractional-order modelling and sensitivity analysis," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    13. Rihan, F.A. & Al-Mdallal, Q.M. & AlSakaji, H.J. & Hashish, A., 2019. "A fractional-order epidemic model with time-delay and nonlinear incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 97-105.
    14. Usman Riaz & Akbar Zada & Zeeshan Ali & Ioan-Lucian Popa & Shahram Rezapour & Sina Etemad, 2021. "On a Riemann–Liouville Type Implicit Coupled System via Generalized Boundary Conditions," Mathematics, MDPI, vol. 9(11), pages 1-22, May.
    15. Shah, Kamal & Abdeljawad, Thabet & Ud Din, Rahim, 2022. "To study the transmission dynamic of SARS-CoV-2 using nonlinear saturated incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    16. Yao, Zichen & Yang, Zhanwen & Gao, Jianfang, 2023. "Unconditional stability analysis of Grünwald Letnikov method for fractional-order delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    17. Wen-Jing Zhu & Shou-Feng Shen & Wen-Xiu Ma, 2022. "A (2+1)-Dimensional Fractional-Order Epidemic Model with Pulse Jumps for Omicron COVID-19 Transmission and Its Numerical Simulation," Mathematics, MDPI, vol. 10(14), pages 1-14, July.
    18. Tuan Hoang, Manh & Nagy, A.M., 2019. "Uniform asymptotic stability of a Logistic model with feedback control of fractional order and nonstandard finite difference schemes," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 24-34.
    19. Naim, Mouhcine & Lahmidi, Fouad & Namir, Abdelwahed & Kouidere, Abdelfatah, 2021. "Dynamics of an fractional SEIR epidemic model with infectivity in latent period and general nonlinear incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    20. Hoang, Manh Tuan, 2022. "Positivity and boundedness preserving nonstandard finite difference schemes for solving Volterra’s population growth model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 199(C), pages 359-373.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jijmms:8273430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.