IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v386y2020ics0096300320304768.html
   My bibliography  Save this article

Reaction-diffusion predator-prey-parasite system and spatiotemporal complexity

Author

Listed:
  • Chakraborty, Bhaskar
  • Ghorai, Santu
  • Bairagi, Nandadulal

Abstract

This paper deals with the spatial pattern formation in a diffusive predator-prey-parasite (PPP) model, where predator feeds on infected prey following type II response function and infection spreads among prey species through horizontal transmission. The study is accomplished with respect to an ecological parameter that quantifies the reproductive gain of predator and two epidemiological parameters which measure the force of infection and virulence of the disease. We show analytically that the interior equilibrium loses its stability through Hopf bifurcation in the absence of diffusion if the reproductive gain of predator crosses some threshold value. In case of diffusive system, it is shown that the interior equilibrium, which is otherwise stable, may lose its stability due to diffusion. Criteria for the occurrence of various types of instability, like Turing, Hopf-Turing and pure Hopf, associated with the PPP model are presented with illustrations. Our simulation results reveal that this diffusion-driven instability creates various spatio-temporal patterns, like spot, stripe, mixture of spots & stripes and spiral patterns, depending upon the values of ecological and diffusion parameters. Turing instability and the corresponding patterns are also observed with the variation of two epidemiological parameters. Interestingly, the epidemiological parameters that measure the infection rate and virulence of the disease show opposite patterns with their increasing values.

Suggested Citation

  • Chakraborty, Bhaskar & Ghorai, Santu & Bairagi, Nandadulal, 2020. "Reaction-diffusion predator-prey-parasite system and spatiotemporal complexity," Applied Mathematics and Computation, Elsevier, vol. 386(C).
  • Handle: RePEc:eee:apmaco:v:386:y:2020:i:c:s0096300320304768
    DOI: 10.1016/j.amc.2020.125518
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320304768
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125518?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Zhan-Ping & Huo, Hai-Feng & Xiang, Hong, 2017. "Hopf bifurcation for a delayed predator–prey diffusion system with Dirichlet boundary condition," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 1-18.
    2. Chen, Mengxin & Wu, Ranchao & Chen, Liping, 2020. "Spatiotemporal patterns induced by Turing and Turing-Hopf bifurcations in a predator-prey system," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    3. Peng, Yahong & Ling, Heyang, 2018. "Pattern formation in a ratio-dependent predator-prey model with cross-diffusion," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 307-318.
    4. Sahoo, Banshidhar, 2015. "Role of additional food in eco-epidemiological system with disease in the prey," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 61-79.
    5. Zhang, Huisen & Cai, Yongli & Fu, Shengmao & Wang, Weiming, 2019. "Impact of the fear effect in a prey-predator model incorporating a prey refuge," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 328-337.
    6. Mbava, W. & Mugisha, J.Y.T. & Gonsalves, J.W., 2017. "Prey, predator and super-predator model with disease in the super-predator," Applied Mathematics and Computation, Elsevier, vol. 297(C), pages 92-114.
    7. Hupkes, Hermen Jan & Morelli, Leonardo & Stehlík, Petr & Švígler, Vladimír, 2019. "Multichromatic travelling waves for lattice Nagumo equations," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 430-452.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marick, Sounov & Bhattacharya, Santanu & Bairagi, Nandadulal, 2023. "Dynamic properties of a reaction–diffusion predator–prey model with nonlinear harvesting: A linear and weakly nonlinear analysis," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    2. Ghorai, Santu & Chakraborty, Bhaskar & Bairagi, Nandadulal, 2021. "Preferential selection of zooplankton and emergence of spatiotemporal patterns in plankton population," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    3. Sarangi, B.P. & Raw, S.N., 2023. "Dynamics of a spatially explicit eco-epidemic model with double Allee effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 241-263.
    4. Bhunia, Bidhan & Ghorai, Santu & Kar, Tapan Kumar & Biswas, Samir & Bhutia, Lakpa Thendup & Debnath, Papiya, 2023. "A study of a spatiotemporal delayed predator–prey model with prey harvesting: Constant and periodic diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Souna, Fethi & Belabbas, Mustapha & Menacer, Youssaf, 2023. "Complex pattern formations induced by the presence of cross-diffusion in a generalized predator–prey model incorporating the Holling type functional response and generalization of habitat complexity e," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 597-618.
    2. Mbava, W. & Mugisha, J.Y.T. & Gonsalves, J.W., 2017. "Prey, predator and super-predator model with disease in the super-predator," Applied Mathematics and Computation, Elsevier, vol. 297(C), pages 92-114.
    3. Ma, Yuanyuan & Dong, Nan & Liu, Na & Xie, Leilei, 2022. "Spatiotemporal and bifurcation characteristics of a nonlinear prey-predator model," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    4. Zhang, Baoxiang & Cai, Yongli & Wang, Bingxian & Wang, Weiming, 2019. "Pattern formation in a reaction–diffusion parasite–host model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 732-740.
    5. Xiaoran Wang & Huimei Liu & Wencai Zhao, 2024. "A Predator–Prey System with a Modified Leslie–Gower and Prey Stage Structure Scheme in Deterministic and Stochastic Environments," Mathematics, MDPI, vol. 12(15), pages 1-26, July.
    6. Barman, Dipesh & Roy, Jyotirmoy & Alrabaiah, Hussam & Panja, Prabir & Mondal, Sankar Prasad & Alam, Shariful, 2021. "Impact of predator incited fear and prey refuge in a fractional order prey predator model," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    7. Chen Zhang & Xianyi Li, 2023. "Dynamics of a Discrete Leslie–Gower Model with Harvesting and Holling-II Functional Response," Mathematics, MDPI, vol. 11(15), pages 1-19, July.
    8. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "Stationary distribution of a stochastic cholera model between communities linked by migration," Applied Mathematics and Computation, Elsevier, vol. 373(C).
    9. Das, Meghadri & Samanta, G.P., 2020. "A delayed fractional order food chain model with fear effect and prey refuge," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 218-245.
    10. Chen, Mengxin & Wu, Ranchao, 2023. "Steady states and spatiotemporal evolution of a diffusive predator–prey model," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    11. Kumbhakar, Ruma & Hossain, Mainul & Karmakar, Sarbari & Pal, Nikhil, 2024. "An investigation of the parameter space in a tri-trophic food chain model with refuge," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 37-59.
    12. Mukherjee, Debasis, 2020. "Role of fear in predator–prey system with intraspecific competition," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 263-275.
    13. Peng, Yahong & Zhang, Guoying, 2020. "Dynamics analysis of a predator–prey model with herd behavior and nonlocal prey competition," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 170(C), pages 366-378.
    14. Kaur, Rajinder Pal & Sharma, Amit & Sharma, Anuj Kumar, 2021. "Impact of fear effect on plankton-fish system dynamics incorporating zooplankton refuge," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    15. Umrao, Anuj Kumar & Roy, Subarna & Tiwari, Pankaj Kumar & Srivastava, Prashant K., 2024. "Dynamical behaviors of autonomous and nonautonomous models of generalist predator–prey system with fear, mutual interference and nonlinear harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    16. Liyun Lai & Zhenliang Zhu & Fengde Chen, 2020. "Stability and Bifurcation in a Predator–Prey Model with the Additive Allee Effect and the Fear Effect," Mathematics, MDPI, vol. 8(8), pages 1-21, August.
    17. Yuanxian Hui & Yunfeng Liu & Zhong Zhao, 2022. "Hopf Bifurcation in a Delayed Equation with Diffusion Driven by Carrying Capacity," Mathematics, MDPI, vol. 10(14), pages 1-16, July.
    18. Ghosh, Joydev & Sahoo, Banshidhar & Poria, Swarup, 2017. "Prey-predator dynamics with prey refuge providing additional food to predator," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 110-119.
    19. Chen, Mengxin & Zheng, Qianqian, 2022. "Predator-taxis creates spatial pattern of a predator-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    20. Rao, Feng & Kang, Yun, 2023. "Dynamics of a stochastic prey–predator system with prey refuge, predation fear and its carry-over effects," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:386:y:2020:i:c:s0096300320304768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.