IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v98y2011i5p791-800.html
   My bibliography  Save this article

Evapotranspiration components and dual crop coefficients of coffee trees during crop production

Author

Listed:
  • Flumignan, Danilton Luiz
  • de Faria, Rogério Teixeira
  • Prete, Cássio Egídio Cavenaghi

Abstract

Quantifying crop water consumption is essential for many applications in agriculture, such as crop zoning, yield forecast and irrigation management. The objective of this study was to determine evaporation (E), transpiration (T) and dual crop coefficients (Ke and Kcb) of coffee trees during crop production (3rd and 4th year of cultivation), conducted under sprinkler and drip irrigation and no irrigation, in Londrina, Paraná State, Brazil. Crop evapotranspiration (ET) was measured by weighing lysimeters cultivated with plants of cultivar IAPAR 59, E was measured by microlysimeters installed on the lysimeters and T was obtained by the difference between ET and E. The crop coefficient (Kc) was determined for the irrigated treatments as the ratio between ET and the reference evapotranspiration (ETo). Similarly, evaporation coefficient (Ke) and basal crop coefficient (Kcb) were determined as the ratio of E and T, respectively, to the value of ETo, which was estimated by the ASCE Penman-Monteith method on an hourly basis. The values of E and Ke varied due to atmospheric demand and water application method. Those factors, in addition to crop phenology and leaf area evolution, also influenced T and Kcb. Regardless irrigation treatment, the measured values of E represented 35% of ET, while T was 65% of ET. The recommended values of Ke were 0.46 and 0.26 for sprinkler and drip irrigation, respectively. The recommended values of Kcb were 0.52 and 0.82 for sprinkler-irrigated, and 0.5 and 0.65 for drip-irrigated treatments, varying as a function of daily ETo (ETo >= or

Suggested Citation

  • Flumignan, Danilton Luiz & de Faria, Rogério Teixeira & Prete, Cássio Egídio Cavenaghi, 2011. "Evapotranspiration components and dual crop coefficients of coffee trees during crop production," Agricultural Water Management, Elsevier, vol. 98(5), pages 791-800, March.
  • Handle: RePEc:eee:agiwat:v:98:y:2011:i:5:p:791-800
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(10)00381-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. López-Urrea, R. & Montoro, A. & López-Fuster, P. & Fereres, E., 2009. "Evapotranspiration and responses to irrigation of broccoli," Agricultural Water Management, Elsevier, vol. 96(7), pages 1155-1161, July.
    2. Orgaz, F. & Fernandez, M.D. & Bonachela, S. & Gallardo, M. & Fereres, E., 2005. "Evapotranspiration of horticultural crops in an unheated plastic greenhouse," Agricultural Water Management, Elsevier, vol. 72(2), pages 81-96, March.
    3. Kang, Shaozhong & Gu, Binjie & Du, Taisheng & Zhang, Jianhua, 2003. "Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in a semi-humid region," Agricultural Water Management, Elsevier, vol. 59(3), pages 239-254, April.
    4. López-Urrea, R. & Martín de Santa Olalla, F. & Montoro, A. & López-Fuster, P., 2009. "Single and dual crop coefficients and water requirements for onion (Allium cepa L.) under semiarid conditions," Agricultural Water Management, Elsevier, vol. 96(6), pages 1031-1036, June.
    5. Tyagi, N. K. & Sharma, D. K. & Luthra, S. K., 2000. "Determination of evapotranspiration and crop coefficients of rice and sunflower with lysimeter," Agricultural Water Management, Elsevier, vol. 45(1), pages 41-54, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Di & Wang, Li, 2017. "Dynamics of evapotranspiration partitioning for apple trees of different ages in a semiarid region of northwest China," Agricultural Water Management, Elsevier, vol. 191(C), pages 1-15.
    2. Xia, Xiong & Hu, Deyong & Liu, Xin & Yue, Lingli & Ma, Bin & Chen, Yongzhong & Wu, Youjie, 2024. "Partitioning evapotranspiration of Camellia oleifera during the growing season based on the Penman-Monteith model combined with the micro-lysimeter and stable isotope methods," Agricultural Water Management, Elsevier, vol. 297(C).
    3. Jamshidi, Sajad & Zand-Parsa, Shahrokh & Kamgar-Haghighi, Ali Akbar & Shahsavar, Ali Reza & Niyogi, Dev, 2020. "Evapotranspiration, crop coefficients, and physiological responses of citrus trees in semi-arid climatic conditions," Agricultural Water Management, Elsevier, vol. 227(C).
    4. Naveen-Gupta, & Eberbach, P.L. & Humphreys, E. & Balwinder-Singh, & Sudhir-Yadav, & Kukal, S.S., 2019. "Estimating soil evaporation in dry seeded rice and wheat crops after wetting events," Agricultural Water Management, Elsevier, vol. 217(C), pages 98-106.
    5. Zhao, Peng & Kang, Shaozhong & Li, Sien & Ding, Risheng & Tong, Ling & Du, Taisheng, 2018. "Seasonal variations in vineyard ET partitioning and dual crop coefficients correlate with canopy development and surface soil moisture," Agricultural Water Management, Elsevier, vol. 197(C), pages 19-33.
    6. Di Wang, & Wang, Li, 2023. "Characteristics of soil evaporation at two stages of growth in apple orchards with different ages in a semi-humid region," Agricultural Water Management, Elsevier, vol. 280(C).
    7. Kaneko, Teruko & Gould, Nick & Campbell, David & Snelgar, Patrick & Clearwater, Michael J., 2022. "The effect of soil type, fruit load and shaded area on ‘Hass’ avocado (Persea americana Mill.) water use and crop coefficients," Agricultural Water Management, Elsevier, vol. 264(C).
    8. Hou, Lizhu & Wenninger, Jochen & Shen, Jiangen & Zhou, Yangxiao & Bao, Han & Liu, Haijun, 2014. "Assessing crop coefficients for Zea mays in the semi-arid Hailiutu River catchment, northwest China," Agricultural Water Management, Elsevier, vol. 140(C), pages 37-47.
    9. Haofang Yan & Song Huang & Jianyun Zhang & Chuan Zhang & Guoqing Wang & Lanlan Li & Shuang Zhao & Mi Li & Baoshan Zhao, 2022. "Comparison of Shuttleworth–Wallace and Dual Crop Coefficient Method for Estimating Evapotranspiration of a Tea Field in Southeast China," Agriculture, MDPI, vol. 12(9), pages 1-17, September.
    10. Phogat, V. & Šimůnek, J. & Skewes, M.A. & Cox, J.W. & McCarthy, M.G., 2016. "Improving the estimation of evaporation by the FAO-56 dual crop coefficient approach under subsurface drip irrigation," Agricultural Water Management, Elsevier, vol. 178(C), pages 189-200.
    11. Jafari, Mohammad & Kamali, Hamidreza & Keshavarz, Ali & Momeni, Akbar, 2021. "Estimation of evapotranspiration and crop coefficient of drip-irrigated orange trees under a semi-arid climate," Agricultural Water Management, Elsevier, vol. 248(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shukla, S. & Shrestha, N.K. & Jaber, F.H. & Srivastava, S. & Obreza, T.A. & Boman, B.J., 2014. "Evapotranspiration and crop coefficient for watermelon grown under plastic mulched conditions in sub-tropical Florida," Agricultural Water Management, Elsevier, vol. 132(C), pages 1-9.
    2. Escarabajal-Henarejos, D. & Fernández-Pacheco, D.G. & Molina-Martínez, J.M. & Martínez-Molina, L. & Ruiz-Canales, A., 2015. "Selection of device to determine temperature gradients for estimating evapotranspiration using energy balance method," Agricultural Water Management, Elsevier, vol. 151(C), pages 136-147.
    3. Qiu, Rangjian & Liu, Chunwei & Cui, Ningbo & Wu, Youjie & Wang, Zhenchang & Li, Gen, 2019. "Evapotranspiration estimation using a modified Priestley-Taylor model in a rice-wheat rotation system," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    4. Sánchez, J.M. & López-Urrea, R. & Rubio, E. & González-Piqueras, J. & Caselles, V., 2014. "Assessing crop coefficients of sunflower and canola using two-source energy balance and thermal radiometry," Agricultural Water Management, Elsevier, vol. 137(C), pages 23-29.
    5. Yang, Pengju & Hu, Hongchang & Tian, Fuqiang & Zhang, Zhi & Dai, Chao, 2016. "Crop coefficient for cotton under plastic mulch and drip irrigation based on eddy covariance observation in an arid area of northwestern China," Agricultural Water Management, Elsevier, vol. 171(C), pages 21-30.
    6. Zhang, Kefeng & Hilton, Howard W. & Greenwood, Duncan J. & Thompson, Andrew J., 2011. "A rigorous approach of determining FAO56 dual crop coefficient using soil sensor measurements and inverse modeling techniques," Agricultural Water Management, Elsevier, vol. 98(6), pages 1081-1090, April.
    7. Facchi, A. & Gharsallah, O. & Corbari, C. & Masseroni, D. & Mancini, M. & Gandolfi, C., 2013. "Determination of maize crop coefficients in humid climate regime using the eddy covariance technique," Agricultural Water Management, Elsevier, vol. 130(C), pages 131-141.
    8. Zhao, Wenzhi & Liu, Bing & Zhang, Zhihui, 2010. "Water requirements of maize in the middle Heihe River basin, China," Agricultural Water Management, Elsevier, vol. 97(2), pages 215-223, February.
    9. López-Urrea, R. & Sánchez, J.M. & de la Cruz, F. & González-Piqueras, J. & Chávez, J.L., 2020. "Evapotranspiration and crop coefficients from lysimeter measurements for sprinkler-irrigated canola," Agricultural Water Management, Elsevier, vol. 239(C).
    10. Drerup, Philipp & Brueck, Holger & Scherer, Heinrich W., 2017. "Evapotranspiration of winter wheat estimated with the FAO 56 approach and NDVI measurements in a temperate humid climate of NW Europe," Agricultural Water Management, Elsevier, vol. 192(C), pages 180-188.
    11. Zhang, Tao & Qiu, Rangjian & Ding, Risheng & Wu, Jingwei & Clothier, Brent, 2023. "Multi-scale spectral characteristics of latent heat flux over flooded rice and winter wheat rotation system," Agricultural Water Management, Elsevier, vol. 288(C).
    12. Pereira, L.S. & Paredes, P. & López-Urrea, R. & Hunsaker, D.J. & Mota, M. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for vegetable crops, an update of FAO56 crop water requirements approach," Agricultural Water Management, Elsevier, vol. 243(C).
    13. Feng, Yu & Gong, Daozhi & Mei, Xurong & Hao, Weiping & Tang, Dahua & Cui, Ningbo, 2017. "Energy balance and partitioning in partial plastic mulched and non-mulched maize fields on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 191(C), pages 193-206.
    14. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    15. Bohua Yu & Wei Song & Yanqing Lang, 2017. "Spatial Patterns and Driving Forces of Greenhouse Land Change in Shouguang City, China," Sustainability, MDPI, vol. 9(3), pages 1-15, March.
    16. García-Mateos, G. & Hernández-Hernández, J.L. & Escarabajal-Henarejos, D. & Jaén-Terrones, S. & Molina-Martínez, J.M., 2015. "Study and comparison of color models for automatic image analysis in irrigation management applications," Agricultural Water Management, Elsevier, vol. 151(C), pages 158-166.
    17. Wang, Weishu & Rong, Yao & Dai, Xiaoqin & Zhang, Chenglong & Wang, Chaozi & Huo, Zailin, 2024. "Variation and attribution of energy distribution for salinized sunflower farmland in arid area," Agricultural Water Management, Elsevier, vol. 297(C).
    18. Escarabajal-Henarejos, D. & Molina-Martínez, J.M. & Fernández-Pacheco, D.G. & Cavas-Martínez, F. & García-Mateos, G., 2015. "Digital photography applied to irrigation management of Little Gem lettuce," Agricultural Water Management, Elsevier, vol. 151(C), pages 148-157.
    19. Zhao, Nana & Liu, Yu & Cai, Jiabing & Paredes, Paula & Rosa, Ricardo D. & Pereira, Luis S., 2013. "Dual crop coefficient modelling applied to the winter wheat–summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component," Agricultural Water Management, Elsevier, vol. 117(C), pages 93-105.
    20. Liu, Yujie & Luo, Yi, 2010. "A consolidated evaluation of the FAO-56 dual crop coefficient approach using the lysimeter data in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(1), pages 31-40, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:98:y:2011:i:5:p:791-800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.