IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v130y2013icp131-141.html
   My bibliography  Save this article

Determination of maize crop coefficients in humid climate regime using the eddy covariance technique

Author

Listed:
  • Facchi, A.
  • Gharsallah, O.
  • Corbari, C.
  • Masseroni, D.
  • Mancini, M.
  • Gandolfi, C.

Abstract

Italy is one of the most important maize producers in the EU, and the Po Valley plain in northern Italy is the largest maize area in the country, with over 1millionha planted. Water consumption for maize is very high because the crop covers almost 30% of the agricultural land of the plain and is irrigated mainly by border irrigation. Conversion to more efficient methods is currently under discussion for many areas. Whatever the irrigation method adopted, an accurate knowledge of maize irrigation requirements is essential to improving irrigation scheduling and water use planning on a regional scale. The FAO-56 “single crop coefficient” procedure is currently the most widely used procedure for the estimation of crop irrigation requirements. However, in the last 15 years, many authors have shown that FAO-56 crop coefficients, even if adjusted to account for local conditions (climate, soil, irrigation and crop management), may differ by up to ±40% from experimentally determined values. In this study, Kc was derived as the ratio of the actual crop evapotranspiration in well-watered conditions (ETc), as measured by the eddy covariance technique at two maize fields over three years, to the reference crop evapotranspiration ETo. The crop cycle length ranged from 136 to 146 days, depending on the year and the harvesting date, and the accumulated growing degrees-days (GDD) varied from 1590 to 1730°C for silage and grain maize, respectively. The average locally developed Kc values for initial, middle and late growing seasons were 0.33, 0.99 and 0.89–0.35 (the Kc-end value depends on the harvesting time). The experimental Kc-mid was 15% lower than the FAO-56 value adjusted for local conditions. Average seasonal ETc values were 430 and 400mm for grain and silage second-crop maize, respectively

Suggested Citation

  • Facchi, A. & Gharsallah, O. & Corbari, C. & Masseroni, D. & Mancini, M. & Gandolfi, C., 2013. "Determination of maize crop coefficients in humid climate regime using the eddy covariance technique," Agricultural Water Management, Elsevier, vol. 130(C), pages 131-141.
  • Handle: RePEc:eee:agiwat:v:130:y:2013:i:c:p:131-141
    DOI: 10.1016/j.agwat.2013.08.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377413002230
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2013.08.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kuo, Sheng-Feng & Ho, Shin-Shen & Liu, Chen-Wuing, 2006. "Estimation irrigation water requirements with derived crop coefficients for upland and paddy crops in ChiaNan Irrigation Association, Taiwan," Agricultural Water Management, Elsevier, vol. 82(3), pages 433-451, April.
    2. Bezerra, Bergson G. & da Silva, Bernardo B. & Bezerra, José R.C. & Sofiatti, Valdinei & dos Santos, Carlos A.C., 2012. "Evapotranspiration and crop coefficient for sprinkler-irrigated cotton crop in Apodi Plateau semiarid lands of Brazil," Agricultural Water Management, Elsevier, vol. 107(C), pages 86-93.
    3. López-Urrea, R. & Martín de Santa Olalla, F. & Montoro, A. & López-Fuster, P., 2009. "Single and dual crop coefficients and water requirements for onion (Allium cepa L.) under semiarid conditions," Agricultural Water Management, Elsevier, vol. 96(6), pages 1031-1036, June.
    4. Watanabe, Kota & Yamamoto, Takashi & Yamada, Takashi & Sakuratani, Tetsuo & Nawata, Eiji & Noichana, Chairat & Sributta, Akadet & Higuchi, Hirokazu, 2004. "Changes in seasonal evapotranspiration, soil water content, and crop coefficients in sugarcane, cassava, and maize fields in Northeast Thailand," Agricultural Water Management, Elsevier, vol. 67(2), pages 133-143, June.
    5. Piccinni, Giovanni & Ko, Jonghan & Marek, Thomas & Howell, Terry, 2009. "Determination of growth-stage-specific crop coefficients (KC) of maize and sorghum," Agricultural Water Management, Elsevier, vol. 96(12), pages 1698-1704, December.
    6. Suleiman, Ayman A. & Tojo Soler, Cecilia M. & Hoogenboom, Gerrit, 2007. "Evaluation of FAO-56 crop coefficient procedures for deficit irrigation management of cotton in a humid climate," Agricultural Water Management, Elsevier, vol. 91(1-3), pages 33-42, July.
    7. Kjaersgaard, J.H. & Plauborg, F. & Mollerup, M. & Petersen, C.T. & Hansen, S., 2008. "Crop coefficients for winter wheat in a sub-humid climate regime," Agricultural Water Management, Elsevier, vol. 95(8), pages 918-924, August.
    8. Tyagi, N. K. & Sharma, D. K. & Luthra, S. K., 2000. "Determination of evapotranspiration and crop coefficients of rice and sunflower with lysimeter," Agricultural Water Management, Elsevier, vol. 45(1), pages 41-54, June.
    9. Ko, Jonghan & Piccinni, Giovanni & Marek, Thomas & Howell, Terry, 2009. "Determination of growth-stage-specific crop coefficients (Kc) of cotton and wheat," Agricultural Water Management, Elsevier, vol. 96(12), pages 1691-1697, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anderson, Ray G. & Alfieri, Joseph G. & Tirado-Corbalá, Rebecca & Gartung, Jim & McKee, Lynn G. & Prueger, John H. & Wang, Dong & Ayars, James E. & Kustas, William P., 2017. "Assessing FAO-56 dual crop coefficients using eddy covariance flux partitioning," Agricultural Water Management, Elsevier, vol. 179(C), pages 92-102.
    2. Machakaire, A.T.B. & Steyn, J.M. & Franke, A.C., 2021. "Assessing evapotranspiration and crop coefficients of potato in a semi-arid climate using Eddy Covariance techniques," Agricultural Water Management, Elsevier, vol. 255(C).
    3. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    4. Lei Liu & Jianqin Ma & Xiuping Hao & Qingyun Li, 2019. "Limitations of Water Resources to Crop Water Requirement in the Irrigation Districts along the Lower Reach of the Yellow River in China," Sustainability, MDPI, vol. 11(17), pages 1-18, August.
    5. Rashid Niaghi, Ali & Jia, Xinhua & Steele, Dean D. & Scherer, Thomas F., 2019. "Drainage water management effects on energy flux partitioning, evapotranspiration, and crop coefficients of corn," Agricultural Water Management, Elsevier, vol. 225(C).
    6. Wang, Yunfei & Cai, Huanjie & Yu, Lianyu & Peng, Xiongbiao & Xu, Jiatun & Wang, Xiaowen, 2020. "Evapotranspiration partitioning and crop coefficient of maize in dry semi-humid climate regime," Agricultural Water Management, Elsevier, vol. 236(C).
    7. Yang, Pengju & Hu, Hongchang & Tian, Fuqiang & Zhang, Zhi & Dai, Chao, 2016. "Crop coefficient for cotton under plastic mulch and drip irrigation based on eddy covariance observation in an arid area of northwestern China," Agricultural Water Management, Elsevier, vol. 171(C), pages 21-30.
    8. Ji, X.B. & Chen, J.M. & Zhao, W.Z. & Kang, E.S. & Jin, B.W. & Xu, S.Q., 2017. "Comparison of hourly and daily Penman-Monteith grass- and alfalfa-reference evapotranspiration equations and crop coefficients for maize under arid climatic conditions," Agricultural Water Management, Elsevier, vol. 192(C), pages 1-11.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Komlan Koudahe & Aleksey Y. Sheshukov & Jonathan Aguilar & Koffi Djaman, 2021. "Irrigation-Water Management and Productivity of Cotton: A Review," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    3. Yang, Pengju & Hu, Hongchang & Tian, Fuqiang & Zhang, Zhi & Dai, Chao, 2016. "Crop coefficient for cotton under plastic mulch and drip irrigation based on eddy covariance observation in an arid area of northwestern China," Agricultural Water Management, Elsevier, vol. 171(C), pages 21-30.
    4. Zhao, Nana & Liu, Yu & Cai, Jiabing & Paredes, Paula & Rosa, Ricardo D. & Pereira, Luis S., 2013. "Dual crop coefficient modelling applied to the winter wheat–summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component," Agricultural Water Management, Elsevier, vol. 117(C), pages 93-105.
    5. Meysam ABEDINPOUR, 2015. "Evaluation of growth-stage-specific crop coefficients of maize using weighing lysimeter," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 10(2), pages 99-104.
    6. Qiu, Rangjian & Liu, Chunwei & Cui, Ningbo & Wu, Youjie & Wang, Zhenchang & Li, Gen, 2019. "Evapotranspiration estimation using a modified Priestley-Taylor model in a rice-wheat rotation system," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    7. Kumar, Vipan & Udeigwe, Theophilus K. & Clawson, Ernest L. & Rohli, Robert V. & Miller, Donnie K., 2015. "Crop water use and stage-specific crop coefficients for irrigated cotton in the mid-south, United States," Agricultural Water Management, Elsevier, vol. 156(C), pages 63-69.
    8. Sánchez, J.M. & López-Urrea, R. & Rubio, E. & González-Piqueras, J. & Caselles, V., 2014. "Assessing crop coefficients of sunflower and canola using two-source energy balance and thermal radiometry," Agricultural Water Management, Elsevier, vol. 137(C), pages 23-29.
    9. Gloaguen, Romain M. & Rowland, Diane L. & Brym, Zachary T. & Wilson, Chris. H. & Chun, Hyen Chung & Langham, Ray, 2021. "A METHOD FOR DEVELOPING IRRIGATION DECISION SUPPORT SYSTEMS de novo: EXAMPLE OF SESAME (Sesamum indicum L.) A KNOWN DROUGHT TOLERANT SPECIES," Agricultural Water Management, Elsevier, vol. 243(C).
    10. Miao, Qingfeng & Rosa, Ricardo D. & Shi, Haibin & Paredes, Paula & Zhu, Li & Dai, Jiaxin & Gonçalves, José M. & Pereira, Luis S., 2016. "Modeling water use, transpiration and soil evaporation of spring wheat–maize and spring wheat–sunflower relay intercropping using the dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 165(C), pages 211-229.
    11. Drerup, Philipp & Brueck, Holger & Scherer, Heinrich W., 2017. "Evapotranspiration of winter wheat estimated with the FAO 56 approach and NDVI measurements in a temperate humid climate of NW Europe," Agricultural Water Management, Elsevier, vol. 192(C), pages 180-188.
    12. Escarabajal-Henarejos, D. & Fernández-Pacheco, D.G. & Molina-Martínez, J.M. & Martínez-Molina, L. & Ruiz-Canales, A., 2015. "Selection of device to determine temperature gradients for estimating evapotranspiration using energy balance method," Agricultural Water Management, Elsevier, vol. 151(C), pages 136-147.
    13. Paulo Vinicius Demeneck Vieira & Paulo Sérgio Lourenço de Freitas & Roberto Rezende & Rivanildo Dallacort & João Danilo Barbieri & Diego Fernando Daniel, 2024. "Calibration and Simulation of the CERES-Sorghum and CERES-Maize Models for Crops in the Central-West Region of Paraná State," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 11(18), pages 140-140, April.
    14. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    15. Liu, Yujie & Luo, Yi, 2010. "A consolidated evaluation of the FAO-56 dual crop coefficient approach using the lysimeter data in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(1), pages 31-40, January.
    16. Choudhury, B.U. & Singh, Anil Kumar & Pradhan, S., 2013. "Estimation of crop coefficients of dry-seeded irrigated rice–wheat rotation on raised beds by field water balance method in the Indo-Gangetic plains, India," Agricultural Water Management, Elsevier, vol. 123(C), pages 20-31.
    17. Muniandy, Josilva M. & Yusop, Zulkifli & Askari, Muhamad, 2016. "Evaluation of reference evapotranspiration models and determination of crop coefficient for Momordica charantia and Capsicum annuum," Agricultural Water Management, Elsevier, vol. 169(C), pages 77-89.
    18. Lv, Yuping & Xu, Junzeng & Yang, Shihong & Liu, Xiaoyin & Zhang, Jiangang & Wang, Yijiang, 2018. "Inter-seasonal and cross-treatment variability in single-crop coefficients for rice evapotranspiration estimation and their validation under drying-wetting cycle conditions," Agricultural Water Management, Elsevier, vol. 196(C), pages 154-161.
    19. Mhawej, Mario & Nasrallah, Ali & Abunnasr, Yaser & Fadel, Ali & Faour, Ghaleb, 2021. "Better irrigation management using the satellite-based adjusted single crop coefficient (aKc) for over sixty crop types in California, USA," Agricultural Water Management, Elsevier, vol. 256(C).
    20. Raphael, O.D. & Ogedengbe, K. & Fasinmirin, J.T. & Okunade, D. & Akande, I. & Gbadamosi, A., 2018. "Growth-stage-specific crop coefficient and consumptive use of Capsicum chinense using hydraulic weighing lysimeter," Agricultural Water Management, Elsevier, vol. 203(C), pages 179-185.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:130:y:2013:i:c:p:131-141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.