IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v297y2024ics0378377424001665.html
   My bibliography  Save this article

Partitioning evapotranspiration of Camellia oleifera during the growing season based on the Penman-Monteith model combined with the micro-lysimeter and stable isotope methods

Author

Listed:
  • Xia, Xiong
  • Hu, Deyong
  • Liu, Xin
  • Yue, Lingli
  • Ma, Bin
  • Chen, Yongzhong
  • Wu, Youjie

Abstract

Frequent seasonal droughts impact on crop growth and yield in the hilly areas of southern China. A good knowledge of its evapotranspiration partitioning of the main economic oil crop Camellia Oleifera is particularly important to increase water productivity and improve water resource management. The isotope-based method was applied to partition ET in the hilly Camellia Oleifera Forest of southern China. The isotopic composition of evapotranspiration vapor (δET), transpiration vapor (δT) and evaporation vapor (δE) were calculated by the Keeling plot method, the Craig-Gordon model (C-G model), and isotopic steady-state assumptions, respectively. The conventional Penman-Monteith model and the micro-lysimeter method (PM-L) were used to compare and assess the ET partitioning results (Ft). It showed that the Ft values calculated by the two methods were in good agreement. The isotopic composition of soil water at the evaporating front (δS) ahead and after DOY151 was sampled at 5 and 10 cm depth, respectively, where the correlation coefficients (R2) of the Ft values calculated by δ18O and δ2H were 0.84 and 0.66. Ft Calculated by δ18O was more accurate than δ2H because of the higher correlation coefficient of δ18O in the keeling plot regression and in the linear fit with PM-L. The isotopic composition of soil evaporation vapor(δE)calculated by dynamic εk (kinetic fractionation effects) values can be more accurate to quantify the ET partitioning results (with the R2 of 0.90). The mean values of Ft were 0.79 and 0.82 by the PM-L method and the isotope-based method respectively over the whole growing season, indicating the isotope method is robust in calculating ET partitioning for Camellia oleifera in the region. We also found that the seasonal variation of Ft is mainly controlled by temperature (T), soil water content (SWC), and leaf area index (LAI), all of which can be effectively expressed as power functions. The results provide potential assistance for water management in Camellia oleifera woodlands.

Suggested Citation

  • Xia, Xiong & Hu, Deyong & Liu, Xin & Yue, Lingli & Ma, Bin & Chen, Yongzhong & Wu, Youjie, 2024. "Partitioning evapotranspiration of Camellia oleifera during the growing season based on the Penman-Monteith model combined with the micro-lysimeter and stable isotope methods," Agricultural Water Management, Elsevier, vol. 297(C).
  • Handle: RePEc:eee:agiwat:v:297:y:2024:i:c:s0378377424001665
    DOI: 10.1016/j.agwat.2024.108831
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424001665
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108831?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Widmoser, Peter, 2009. "A discussion on and alternative to the Penman-Monteith equation," Agricultural Water Management, Elsevier, vol. 96(4), pages 711-721, April.
    2. Lu, Xuefei & Liang, Liyin L. & Wang, Lixin & Jenerette, G. Darrel & McCabe, Matthew F. & Grantz, David A., 2017. "Partitioning of evapotranspiration using a stable isotope technique in an arid and high temperature agricultural production system," Agricultural Water Management, Elsevier, vol. 179(C), pages 103-109.
    3. Flumignan, Danilton Luiz & de Faria, Rogério Teixeira & Prete, Cássio Egídio Cavenaghi, 2011. "Evapotranspiration components and dual crop coefficients of coffee trees during crop production," Agricultural Water Management, Elsevier, vol. 98(5), pages 791-800, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Shihua & Fang, Xia & Cao, Liangzhong & Hang, Xin & Xie, Xiaoping & Sun, Liangxiao & Li, Yachun, 2023. "Multivariate drives and their interactive effects on the ratio of transpiration to evapotranspiration over Central Asia ecosystems," Ecological Modelling, Elsevier, vol. 478(C).
    2. Ting Zhang & Qian Gao & Huaming Xie & Qianjiao Wu & Yuwen Yu & Chukun Zhou & Zixian Chen & Hanqing Hu, 2022. "Response of Water Yield to Future Climate Change Based on InVEST and CMIP6—A Case Study of the Chaohu Lake Basin," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
    3. Jafari, Mohammad & Kamali, Hamidreza & Keshavarz, Ali & Momeni, Akbar, 2021. "Estimation of evapotranspiration and crop coefficient of drip-irrigated orange trees under a semi-arid climate," Agricultural Water Management, Elsevier, vol. 248(C).
    4. Sentelhas, Paulo C. & Gillespie, Terry J. & Santos, Eduardo A., 2010. "Evaluation of FAO Penman-Monteith and alternative methods for estimating reference evapotranspiration with missing data in Southern Ontario, Canada," Agricultural Water Management, Elsevier, vol. 97(5), pages 635-644, May.
    5. Haofang Yan & Song Huang & Jianyun Zhang & Chuan Zhang & Guoqing Wang & Lanlan Li & Shuang Zhao & Mi Li & Baoshan Zhao, 2022. "Comparison of Shuttleworth–Wallace and Dual Crop Coefficient Method for Estimating Evapotranspiration of a Tea Field in Southeast China," Agriculture, MDPI, vol. 12(9), pages 1-17, September.
    6. Jamshidi, Sajad & Zand-Parsa, Shahrokh & Kamgar-Haghighi, Ali Akbar & Shahsavar, Ali Reza & Niyogi, Dev, 2020. "Evapotranspiration, crop coefficients, and physiological responses of citrus trees in semi-arid climatic conditions," Agricultural Water Management, Elsevier, vol. 227(C).
    7. Feng, Yu & Hao, Weiping & Gao, Lili & Li, Haoru & Gong, Daozhi & Cui, Ningbo, 2019. "Comparison of maize water consumption at different scales between mulched and non-mulched croplands," Agricultural Water Management, Elsevier, vol. 216(C), pages 315-324.
    8. Zhao, Peng & Kang, Shaozhong & Li, Sien & Ding, Risheng & Tong, Ling & Du, Taisheng, 2018. "Seasonal variations in vineyard ET partitioning and dual crop coefficients correlate with canopy development and surface soil moisture," Agricultural Water Management, Elsevier, vol. 197(C), pages 19-33.
    9. Wang, Di & Wang, Li, 2017. "Dynamics of evapotranspiration partitioning for apple trees of different ages in a semiarid region of northwest China," Agricultural Water Management, Elsevier, vol. 191(C), pages 1-15.
    10. Kaneko, Teruko & Gould, Nick & Campbell, David & Snelgar, Patrick & Clearwater, Michael J., 2022. "The effect of soil type, fruit load and shaded area on ‘Hass’ avocado (Persea americana Mill.) water use and crop coefficients," Agricultural Water Management, Elsevier, vol. 264(C).
    11. Bian, Jiang & Hu, Xiaolong & Shi, Liangsheng & Min, Leilei & Zhang, Yucui & Shen, Yanjun & Zhao, Fenghua & Zha, Yuanyuan & Lian, Xie & Huang, Jiesheng, 2024. "Evapotranspiration partitioning by integrating eddy covariance, micro-lysimeter and unmanned aerial vehicle observations: A case study in the North China Plain," Agricultural Water Management, Elsevier, vol. 295(C).
    12. Jiao, Yinying & Zhu, Guofeng & Meng, Gaojia & Lu, Siyu & Qiu, Dongdong & Lin, Xinrui & Li, Rui & Wang, Qinqin & Chen, Longhu & Zhao, Ling & Yang, Jiangwei & Sun, Niu, 2023. "Estimating non-productive water loss in irrigated farmland in arid oasis regions: Based on stable isotope data," Agricultural Water Management, Elsevier, vol. 289(C).
    13. Lai, Jianbin & Liu, Tiegang & Luo, Yi, 2022. "Evapotranspiration partitioning for winter wheat with shallow groundwater in the lower reach of the Yellow River Basin," Agricultural Water Management, Elsevier, vol. 266(C).
    14. Hou, Lizhu & Wenninger, Jochen & Shen, Jiangen & Zhou, Yangxiao & Bao, Han & Liu, Haijun, 2014. "Assessing crop coefficients for Zea mays in the semi-arid Hailiutu River catchment, northwest China," Agricultural Water Management, Elsevier, vol. 140(C), pages 37-47.
    15. Phogat, V. & Šimůnek, J. & Skewes, M.A. & Cox, J.W. & McCarthy, M.G., 2016. "Improving the estimation of evaporation by the FAO-56 dual crop coefficient approach under subsurface drip irrigation," Agricultural Water Management, Elsevier, vol. 178(C), pages 189-200.
    16. Naveen-Gupta, & Eberbach, P.L. & Humphreys, E. & Balwinder-Singh, & Sudhir-Yadav, & Kukal, S.S., 2019. "Estimating soil evaporation in dry seeded rice and wheat crops after wetting events," Agricultural Water Management, Elsevier, vol. 217(C), pages 98-106.
    17. Di Wang, & Wang, Li, 2023. "Characteristics of soil evaporation at two stages of growth in apple orchards with different ages in a semi-humid region," Agricultural Water Management, Elsevier, vol. 280(C).
    18. Widmoser, P., 2010. "An alternative to define canopy surface temperature bounds," Agricultural Water Management, Elsevier, vol. 97(2), pages 224-230, February.
    19. Alam, Muhammad Shahinur & Lamb, David W. & Rahman, Muhammad Moshiur, 2019. "In-situ partitioning of evaporation and transpiration components using a portable evapotranspiration dome—A case study in Tall Fescue (Festuca arundinacea)," Agricultural Water Management, Elsevier, vol. 213(C), pages 352-357.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:297:y:2024:i:c:s0378377424001665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.