IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v239y2020ics0378377420302110.html
   My bibliography  Save this article

Evapotranspiration and crop coefficients from lysimeter measurements for sprinkler-irrigated canola

Author

Listed:
  • López-Urrea, R.
  • Sánchez, J.M.
  • de la Cruz, F.
  • González-Piqueras, J.
  • Chávez, J.L.

Abstract

Canola is a water-stress tolerant crop, which could be an alternative in areas with limited water resources. However, in arid and semi-arid environments where rainfall events are scarce and increasingly erratic, the use of irrigation is necessary for canola production to reach its maximum yield. The goal of this study was to determine the crop evapotranspiration (ETc) and crop coefficients of sprinkler irrigated canola (Brassica napus L.) under non-limiting soil water content conditions. A 2-year field experiment was conducted in the lysimeter facility located in Albacete (SE Spain). A large weighing lysimeter (2.7 × 2.3 × 1.7 m), with an accuracy of 0.04 mm equivalent water depth, was used to measure the daily crop evapotranspiration (ETc) rate throughout two growing seasons. ETc values were determined using daily mass change in the lysimeter. Cumulative ETc was replaced in the lysimeter through sprinkler irrigation applications, thus crop water stress was avoided. Seasonal lysimeter based (measured) canola ETc was 472 and 602 mm in 2008 and 2012, respectively. The 28 % higher ETc value in 2012 was mainly due to a much higher evaporative demand during the crop growth mid-season period of 2012. The Kc values were determined using grass reference evapotranspiration (ETo) calculated with the FAO56 Penman-Monteith equation and the ETc calculations from the lysimeter data. The dual crop coefficient approach was used to separate crop transpiration (Kcb) from soil evaporation (Ke). For the two canola seasons, mid-season Kc and Kcb values, after FAO56 climate adjustment, were Kc mid (std) = 1.15 and Kcb mid (std) = 1.11. Those values were reached coinciding with maximum fraction of ground cover (fc) values of up 0.95 and 0.97 for 2008 and 2012, respectively. The seasonal evaporation component for sprinkler-irrigated canola was estimated to be about 24 % and 19 % of ETc in 2008 and 2012, respectively. The good linear relationship found between canola Kcb values and fc and the excellent agreement found between remotely sensed vegetation indices (VIs) and different biophysical parameters, such as Kcb and fc, will allow monitoring and estimating the spatially distributed water requirements of canola at field and regional scales using multispectral satellite imagery.

Suggested Citation

  • López-Urrea, R. & Sánchez, J.M. & de la Cruz, F. & González-Piqueras, J. & Chávez, J.L., 2020. "Evapotranspiration and crop coefficients from lysimeter measurements for sprinkler-irrigated canola," Agricultural Water Management, Elsevier, vol. 239(C).
  • Handle: RePEc:eee:agiwat:v:239:y:2020:i:c:s0378377420302110
    DOI: 10.1016/j.agwat.2020.106260
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377420302110
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106260?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. López-Urrea, R. & Montoro, A. & López-Fuster, P. & Fereres, E., 2009. "Evapotranspiration and responses to irrigation of broccoli," Agricultural Water Management, Elsevier, vol. 96(7), pages 1155-1161, July.
    2. Pôças, I. & Calera, A. & Campos, I. & Cunha, M., 2020. "Remote sensing for estimating and mapping single and basal crop coefficientes: A review on spectral vegetation indices approaches," Agricultural Water Management, Elsevier, vol. 233(C).
    3. Campos, Isidro & Balbontín, Claudio & González-Piqueras, Jose & González-Dugo, Maria P. & Neale, Christopher M.U. & Calera, Alfonso, 2016. "Combining a water balance model with evapotranspiration measurements to estimate total available soil water in irrigated and rainfed vineyards," Agricultural Water Management, Elsevier, vol. 165(C), pages 141-152.
    4. Lopez-Urrea, R. & Martin de Santa Olalla, F. & Fabeiro, C. & Moratalla, A., 2006. "Testing evapotranspiration equations using lysimeter observations in a semiarid climate," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 15-26, September.
    5. Gonzalez-Dugo, M.P. & Mateos, L., 2008. "Spectral vegetation indices for benchmarking water productivity of irrigated cotton and sugarbeet crops," Agricultural Water Management, Elsevier, vol. 95(1), pages 48-58, January.
    6. Allen, Richard G. & Pereira, Luis S. & Howell, Terry A. & Jensen, Marvin E., 2011. "Evapotranspiration information reporting: II. Recommended documentation," Agricultural Water Management, Elsevier, vol. 98(6), pages 921-929, April.
    7. Sánchez, J.M. & López-Urrea, R. & Rubio, E. & González-Piqueras, J. & Caselles, V., 2014. "Assessing crop coefficients of sunflower and canola using two-source energy balance and thermal radiometry," Agricultural Water Management, Elsevier, vol. 137(C), pages 23-29.
    8. Campos, Isidro & Neale, Christopher M.U. & Suyker, Andrew E. & Arkebauer, Timothy J. & Gonçalves, Ivo Z., 2017. "Reflectance-based crop coefficients REDUX: For operational evapotranspiration estimates in the age of high producing hybrid varieties," Agricultural Water Management, Elsevier, vol. 187(C), pages 140-153.
    9. López-Urrea, R. & Martín de Santa Olalla, F. & Montoro, A. & López-Fuster, P., 2009. "Single and dual crop coefficients and water requirements for onion (Allium cepa L.) under semiarid conditions," Agricultural Water Management, Elsevier, vol. 96(6), pages 1031-1036, June.
    10. Allen, Richard G. & Pereira, Luis S. & Howell, Terry A. & Jensen, Marvin E., 2011. "Evapotranspiration information reporting: I. Factors governing measurement accuracy," Agricultural Water Management, Elsevier, vol. 98(6), pages 899-920, April.
    11. Jayanthi, Harikishan & Neale, Christopher M.U. & Wright, James L., 2007. "Development and validation of canopy reflectance-based crop coefficient for potato," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 235-246, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shao, Guomin & Han, Wenting & Zhang, Huihui & Zhang, Liyuan & Wang, Yi & Zhang, Yu, 2023. "Prediction of maize crop coefficient from UAV multisensor remote sensing using machine learning methods," Agricultural Water Management, Elsevier, vol. 276(C).
    2. Manuel Soler-Méndez & Dolores Parras-Burgos & Estefanía Mas-Espinosa & Antonio Ruíz-Canales & Diego S. Intrigliolo & José Miguel Molina-Martínez, 2021. "Standardization of the Dimensions of a Portable Weighing Lysimeter Designed to Be Applied to Vegetable Crops in Mediterranean Climates," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    3. Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).
    4. Qiu, Rangjian & Li, Longan & Liu, Chunwei & Wang, Zhenchang & Zhang, Baozhong & Liu, Zhandong, 2022. "Evapotranspiration estimation using a modified crop coefficient model in a rotated rice-winter wheat system," Agricultural Water Management, Elsevier, vol. 264(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pereira, L.S. & Paredes, P. & López-Urrea, R. & Hunsaker, D.J. & Mota, M. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for vegetable crops, an update of FAO56 crop water requirements approach," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Escarabajal-Henarejos, D. & Fernández-Pacheco, D.G. & Molina-Martínez, J.M. & Martínez-Molina, L. & Ruiz-Canales, A., 2015. "Selection of device to determine temperature gradients for estimating evapotranspiration using energy balance method," Agricultural Water Management, Elsevier, vol. 151(C), pages 136-147.
    3. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    4. Ouaadi, Nadia & Jarlan, Lionel & Khabba, Saïd & Le Page, Michel & Chakir, Adnane & Er-Raki, Salah & Frison, Pierre-Louis, 2023. "Are the C-band backscattering coefficient and interferometric coherence suitable substitutes of NDVI for the monitoring of the FAO-56 crop coefficient?," Agricultural Water Management, Elsevier, vol. 282(C).
    5. Pôças, I. & Calera, A. & Campos, I. & Cunha, M., 2020. "Remote sensing for estimating and mapping single and basal crop coefficientes: A review on spectral vegetation indices approaches," Agricultural Water Management, Elsevier, vol. 233(C).
    6. Gonçalves, Ivo Zution & Mekonnen, Mesfin M. & Neale, Christopher M.U. & Campos, Isidro & Neale, Michael R., 2020. "Temporal and spatial variations of irrigation water use for commercial corn fields in Central Nebraska," Agricultural Water Management, Elsevier, vol. 228(C).
    7. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    8. Bispo, R.C. & Hernandez, F.B.T. & Gonçalves, I.Z. & Neale, C.M.U. & Teixeira, A.H.C., 2022. "Remote sensing based evapotranspiration modeling for sugarcane in Brazil using a hybrid approach," Agricultural Water Management, Elsevier, vol. 271(C).
    9. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    10. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Mota, M. & Wang, T., 2021. "Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization," Agricultural Water Management, Elsevier, vol. 252(C).
    11. Salgado, Ramiro & Mateos, Luciano, 2021. "Evaluation of different methods of estimating ET for the performance assessment of irrigation schemes," Agricultural Water Management, Elsevier, vol. 243(C).
    12. Mahmoud, Shereif H. & Gan, Thian Yew, 2019. "Irrigation water management in arid regions of Middle East: Assessing spatio-temporal variation of actual evapotranspiration through remote sensing techniques and meteorological data," Agricultural Water Management, Elsevier, vol. 212(C), pages 35-47.
    13. Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).
    14. Campos, Isidro & Neale, Christopher M.U. & Suyker, Andrew E. & Arkebauer, Timothy J. & Gonçalves, Ivo Z., 2017. "Reflectance-based crop coefficients REDUX: For operational evapotranspiration estimates in the age of high producing hybrid varieties," Agricultural Water Management, Elsevier, vol. 187(C), pages 140-153.
    15. Garrido-Rubio, Jesús & González-Piqueras, Jose & Campos, Isidro & Osann, Anna & González-Gómez, Laura & Calera, Alfonso, 2020. "Remote sensing–based soil water balance for irrigation water accounting at plot and water user association management scale," Agricultural Water Management, Elsevier, vol. 238(C).
    16. Campoy, Jaime & Campos, Isidro & Plaza, Carmen & Calera, María & Jiménez, Nuria & Bodas, Vicente & Calera, Alfonso, 2019. "Water use efficiency and light use efficiency in garlic using a remote sensing-based approach," Agricultural Water Management, Elsevier, vol. 219(C), pages 40-48.
    17. Toureiro, Célia & Serralheiro, Ricardo & Shahidian, Shakib & Sousa, Adélia, 2017. "Irrigation management with remote sensing: Evaluating irrigation requirement for maize under Mediterranean climate condition," Agricultural Water Management, Elsevier, vol. 184(C), pages 211-220.
    18. French, Andrew N. & Hunsaker, Douglas J. & Sanchez, Charles A. & Saber, Mazin & Gonzalez, Juan Roberto & Anderson, Ray, 2020. "Satellite-based NDVI crop coefficients and evapotranspiration with eddy covariance validation for multiple durum wheat fields in the US Southwest," Agricultural Water Management, Elsevier, vol. 239(C).
    19. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Wang, T. & López-Urrea, R. & Cancela, J.J. & Allen, R.G., 2020. "Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data," Agricultural Water Management, Elsevier, vol. 241(C).
    20. Rallo, G. & Paço, T.A. & Paredes, P. & Puig-Sirera, À. & Massai, R. & Provenzano, G. & Pereira, L.S., 2021. "Updated single and dual crop coefficients for tree and vine fruit crops," Agricultural Water Management, Elsevier, vol. 250(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:239:y:2020:i:c:s0378377420302110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.