Seasonal variations in vineyard ET partitioning and dual crop coefficients correlate with canopy development and surface soil moisture
Author
Abstract
Suggested Citation
DOI: 10.1016/j.agwat.2017.11.004
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Montoro, A. & Mañas, F. & López-Urrea, R., 2016. "Transpiration and evaporation of grapevine, two components related to irrigation strategy," Agricultural Water Management, Elsevier, vol. 177(C), pages 193-200.
- Liu, Chunwei & Du, Taisheng & Li, Fusheng & Kang, Shaozhong & Li, Sien & Tong, Ling, 2012. "Trunk sap flow characteristics during two growth stages of apple tree and its relationships with affecting factors in an arid region of northwest China," Agricultural Water Management, Elsevier, vol. 104(C), pages 193-202.
- Poblete-Echeverría, C. & Ortega-Farias, S. & Zuñiga, M. & Fuentes, S., 2012. "Evaluation of compensated heat-pulse velocity method to determine vine transpiration using combined measurements of eddy covariance system and microlysimeters," Agricultural Water Management, Elsevier, vol. 109(C), pages 11-19.
- Li, Sien & Kang, Shaozhong & Zhang, Lu & Du, Taisheng & Tong, Ling & Ding, Risheng & Guo, Weihua & Zhao, Peng & Chen, Xia & Xiao, Huan, 2015. "Ecosystem water use efficiency for a sparse vineyard in arid northwest China," Agricultural Water Management, Elsevier, vol. 148(C), pages 24-33.
- Cancela, J.J. & Fandiño, M. & Rey, B.J. & Martínez, E.M., 2015. "Automatic irrigation system based on dual crop coefficient, soil and plant water status for Vitis vinifera (cv Godello and cv Mencía)," Agricultural Water Management, Elsevier, vol. 151(C), pages 52-63.
- Zhang, Yanqun & Kang, Shaozhong & Ward, Eric J. & Ding, Risheng & Zhang, Xin & Zheng, Rui, 2011. "Evapotranspiration components determined by sap flow and microlysimetry techniques of a vineyard in northwest China: Dynamics and influential factors," Agricultural Water Management, Elsevier, vol. 98(8), pages 1207-1214, May.
- Gong, Daozhi & Mei, Xurong & Hao, Weiping & Wang, Hanbo & Caylor, Kelly K., 2017. "Comparison of ET partitioning and crop coefficients between partial plastic mulched and non-mulched maize fields," Agricultural Water Management, Elsevier, vol. 181(C), pages 23-34.
- Qiu, Rangjian & Du, Taisheng & Kang, Shaozhong & Chen, Renqiang & Wu, Laosheng, 2015. "Assessing the SIMDualKc model for estimating evapotranspiration of hot pepper grown in a solar greenhouse in Northwest China," Agricultural Systems, Elsevier, vol. 138(C), pages 1-9.
- Ding, Risheng & Kang, Shaozhong & Li, Fusheng & Zhang, Yanqun & Tong, Ling & Sun, Qingyu, 2010. "Evaluating eddy covariance method by large-scale weighing lysimeter in a maize field of northwest China," Agricultural Water Management, Elsevier, vol. 98(1), pages 87-95, December.
- Flumignan, Danilton Luiz & de Faria, Rogério Teixeira & Prete, Cássio Egídio Cavenaghi, 2011. "Evapotranspiration components and dual crop coefficients of coffee trees during crop production," Agricultural Water Management, Elsevier, vol. 98(5), pages 791-800, March.
- Kato, Tomomichi & Kimura, Reiji & Kamichika, Makio, 2004. "Estimation of evapotranspiration, transpiration ratio and water-use efficiency from a sparse canopy using a compartment model," Agricultural Water Management, Elsevier, vol. 65(3), pages 173-191, March.
- Jiang, Xuelian & Kang, Shaozhong & Li, Fusheng & Du, Taisheng & Tong, Ling & Comas, Louise, 2016. "Evapotranspiration partitioning and variation of sap flow in female and male parents of maize for hybrid seed production in arid region," Agricultural Water Management, Elsevier, vol. 176(C), pages 132-141.
- Er-Raki, S. & Rodriguez, J.C. & Garatuza-Payan, J. & Watts, C.J. & Chehbouni, A., 2013. "Determination of crop evapotranspiration of table grapes in a semi-arid region of Northwest Mexico using multi-spectral vegetation index," Agricultural Water Management, Elsevier, vol. 122(C), pages 12-19.
- Kang, Shaozhong & Gu, Binjie & Du, Taisheng & Zhang, Jianhua, 2003. "Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in a semi-humid region," Agricultural Water Management, Elsevier, vol. 59(3), pages 239-254, April.
- Zhao, Peng & Li, Sien & Li, Fusheng & Du, Taisheng & Tong, Ling & Kang, Shaozhong, 2015. "Comparison of dual crop coefficient method and Shuttleworth–Wallace model in evapotranspiration partitioning in a vineyard of northwest China," Agricultural Water Management, Elsevier, vol. 160(C), pages 41-56.
- Ding, Risheng & Kang, Shaozhong & Zhang, Yanqun & Hao, Xinmei & Tong, Ling & Du, Taisheng, 2013. "Partitioning evapotranspiration into soil evaporation and transpiration using a modified dual crop coefficient model in irrigated maize field with ground-mulching," Agricultural Water Management, Elsevier, vol. 127(C), pages 85-96.
- Zhang, Baozhong & Kang, Shaozhong & Li, Fusheng & Tong, Ling & Du, Taisheng, 2010. "Variation in vineyard evapotranspiration in an arid region of northwest China," Agricultural Water Management, Elsevier, vol. 97(11), pages 1898-1904, November.
- Anderson, Ray G. & Alfieri, Joseph G. & Tirado-Corbalá, Rebecca & Gartung, Jim & McKee, Lynn G. & Prueger, John H. & Wang, Dong & Ayars, James E. & Kustas, William P., 2017. "Assessing FAO-56 dual crop coefficients using eddy covariance flux partitioning," Agricultural Water Management, Elsevier, vol. 179(C), pages 92-102.
- Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kang, Jian & Hao, Xinmei & Zhou, Huiping & Ding, Risheng, 2021. "An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect," Agricultural Water Management, Elsevier, vol. 255(C).
- Tianyi Yang & Haichao Yu & Sien Li & Xiangning Yuan & Xiang Ao & Haochong Chen & Yuexin Wang & Jie Ding, 2024. "Driving Factors and Numerical Simulation of Evapotranspiration of a Typical Cabbage Agroecosystem in the Shiyang River Basin, Northwest China," Agriculture, MDPI, vol. 14(6), pages 1-14, June.
- Gao, Lei & Zhao, Peng & Kang, Shaozhong & Li, Sien & Tong, Ling & Ding, Risheng & Lu, Hongna, 2019. "Surface soil water content dominates the difference between ecosystem and canopy water use efficiency in a sparse vineyard," Agricultural Water Management, Elsevier, vol. 226(C).
- Jia, Qiong & Shi, Haibin & Li, Ruiping & Miao, Qingfeng & Feng, Yayang & Wang, Ning & Li, Jingwei, 2021. "Evaporation of maize crop under mulch film and soil covered drip irrigation: field assessment and modelling on West Liaohe Plain, China," Agricultural Water Management, Elsevier, vol. 253(C).
- Gong, Xuewen & Qiu, Rangjian & Ge, Jiankun & Bo, Guokui & Ping, Yinglu & Xin, Qingsong & Wang, Shunsheng, 2021. "Evapotranspiration partitioning of greenhouse grown tomato using a modified Priestley–Taylor model," Agricultural Water Management, Elsevier, vol. 247(C).
- Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Wang, T. & López-Urrea, R. & Cancela, J.J. & Allen, R.G., 2020. "Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data," Agricultural Water Management, Elsevier, vol. 241(C).
- Huang, Song & Yan, Haofang & Zhang, Chuan & Wang, Guoqing & Acquah, Samuel Joe & Yu, Jianjun & Li, Lanlan & Ma, Jiamin & Opoku Darko, Ransford, 2020. "Modeling evapotranspiration for cucumber plants based on the Shuttleworth-Wallace model in a Venlo-type greenhouse," Agricultural Water Management, Elsevier, vol. 228(C).
- Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Mota, M. & Wang, T., 2021. "Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization," Agricultural Water Management, Elsevier, vol. 252(C).
- Haofang Yan & Song Huang & Jianyun Zhang & Chuan Zhang & Guoqing Wang & Lanlan Li & Shuang Zhao & Mi Li & Baoshan Zhao, 2022. "Comparison of Shuttleworth–Wallace and Dual Crop Coefficient Method for Estimating Evapotranspiration of a Tea Field in Southeast China," Agriculture, MDPI, vol. 12(9), pages 1-17, September.
- Mingze Yao & Manman Gao & Jingkuan Wang & Bo Li & Lizhen Mao & Mingyu Zhao & Zhanyang Xu & Hongfei Niu & Tieliang Wang & Lei Sun & Dongshuang Niu, 2023. "Estimating Evapotranspiration of Greenhouse Tomato under Different Irrigation Levels Using a Modified Dual Crop Coefficient Model in Northeast China," Agriculture, MDPI, vol. 13(9), pages 1-19, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zheng, Jing & Fan, Junliang & Zhang, Fucang & Zhuang, Qianlai, 2021. "Evapotranspiration partitioning and water productivity of rainfed maize under contrasting mulching conditions in Northwest China," Agricultural Water Management, Elsevier, vol. 243(C).
- Qiu, Rangjian & Liu, Chunwei & Cui, Ningbo & Wu, Youjie & Wang, Zhenchang & Li, Gen, 2019. "Evapotranspiration estimation using a modified Priestley-Taylor model in a rice-wheat rotation system," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
- Qiu, Rangjian & Li, Longan & Liu, Chunwei & Wang, Zhenchang & Zhang, Baozhong & Liu, Zhandong, 2022. "Evapotranspiration estimation using a modified crop coefficient model in a rotated rice-winter wheat system," Agricultural Water Management, Elsevier, vol. 264(C).
- Ran, Hui & Kang, Shaozhong & Li, Fusheng & Tong, Ling & Ding, Risheng & Du, Taisheng & Li, Sien & Zhang, Xiaotao, 2017. "Performance of AquaCrop and SIMDualKc models in evapotranspiration partitioning on full and deficit irrigated maize for seed production under plastic film-mulch in an arid region of China," Agricultural Systems, Elsevier, vol. 151(C), pages 20-32.
- Feng, Yu & Gong, Daozhi & Mei, Xurong & Hao, Weiping & Tang, Dahua & Cui, Ningbo, 2017. "Energy balance and partitioning in partial plastic mulched and non-mulched maize fields on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 191(C), pages 193-206.
- Haofang Yan & Song Huang & Jianyun Zhang & Chuan Zhang & Guoqing Wang & Lanlan Li & Shuang Zhao & Mi Li & Baoshan Zhao, 2022. "Comparison of Shuttleworth–Wallace and Dual Crop Coefficient Method for Estimating Evapotranspiration of a Tea Field in Southeast China," Agriculture, MDPI, vol. 12(9), pages 1-17, September.
- Feng, Yu & Cui, Ningbo & Du, Taisheng & Gong, Daozhi & Hu, Xiaotao & Zhao, Lu, 2017. "Response of sap flux and evapotranspiration to deficit irrigation of greenhouse pear-jujube trees in semi-arid northwest China," Agricultural Water Management, Elsevier, vol. 194(C), pages 1-12.
- Wang, Di & Wang, Li, 2017. "Dynamics of evapotranspiration partitioning for apple trees of different ages in a semiarid region of northwest China," Agricultural Water Management, Elsevier, vol. 191(C), pages 1-15.
- Zhao, Peng & Li, Sien & Li, Fusheng & Du, Taisheng & Tong, Ling & Kang, Shaozhong, 2015. "Comparison of dual crop coefficient method and Shuttleworth–Wallace model in evapotranspiration partitioning in a vineyard of northwest China," Agricultural Water Management, Elsevier, vol. 160(C), pages 41-56.
- Gao, Lei & Zhao, Peng & Kang, Shaozhong & Li, Sien & Tong, Ling & Ding, Risheng & Lu, Hongna, 2019. "Surface soil water content dominates the difference between ecosystem and canopy water use efficiency in a sparse vineyard," Agricultural Water Management, Elsevier, vol. 226(C).
- Gong, Xuewen & Qiu, Rangjian & Ge, Jiankun & Bo, Guokui & Ping, Yinglu & Xin, Qingsong & Wang, Shunsheng, 2021. "Evapotranspiration partitioning of greenhouse grown tomato using a modified Priestley–Taylor model," Agricultural Water Management, Elsevier, vol. 247(C).
- Shao, Guomin & Han, Wenting & Zhang, Huihui & Liu, Shouyang & Wang, Yi & Zhang, Liyuan & Cui, Xin, 2021. "Mapping maize crop coefficient Kc using random forest algorithm based on leaf area index and UAV-based multispectral vegetation indices," Agricultural Water Management, Elsevier, vol. 252(C).
- Jiang, Xuelian & Kang, Shaozhong & Tong, Ling & Li, Sien & Ding, Risheng & Du, Taisheng, 2019. "Modeling evapotranspiration and its components of maize for seed production in an arid region of northwest China using a dual crop coefficient and multisource models," Agricultural Water Management, Elsevier, vol. 222(C), pages 105-117.
- Jiang, Xuelian & Kang, Shaozhong & Li, Fusheng & Du, Taisheng & Tong, Ling & Comas, Louise, 2016. "Evapotranspiration partitioning and variation of sap flow in female and male parents of maize for hybrid seed production in arid region," Agricultural Water Management, Elsevier, vol. 176(C), pages 132-141.
- Zheng, Jing & Fan, Junliang & Zhang, Fucang & Wu, Lifeng & Zou, Yufeng & Zhuang, Qianlai, 2021. "Estimation of rainfed maize transpiration under various mulching methods using modified Jarvis-Stewart model and hybrid support vector machine model with whale optimization algorithm," Agricultural Water Management, Elsevier, vol. 249(C).
- Di Wang, & Wang, Li, 2023. "Characteristics of soil evaporation at two stages of growth in apple orchards with different ages in a semi-humid region," Agricultural Water Management, Elsevier, vol. 280(C).
- Zhao, Yin & Mao, Xiaomin & Shukla, Manoj K. & Tian, Fei & Hou, Mengjie & Zhang, Tong & Li, Sien, 2021. "How does film mulching modify available energy, evapotranspiration, and crop coefficient during the seed–maize growing season in northwest China?," Agricultural Water Management, Elsevier, vol. 245(C).
- Gong, Xuewen & Qiu, Rangjian & Zhang, Baozhong & Wang, Shunsheng & Ge, Jiankun & Gao, Shikai & Yang, Zaiqiang, 2021. "Energy budget for tomato plants grown in a greenhouse in northern China," Agricultural Water Management, Elsevier, vol. 255(C).
- Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Wang, T. & López-Urrea, R. & Cancela, J.J. & Allen, R.G., 2020. "Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data," Agricultural Water Management, Elsevier, vol. 241(C).
- Kang, Jian & Hao, Xinmei & Zhou, Huiping & Ding, Risheng, 2021. "An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect," Agricultural Water Management, Elsevier, vol. 255(C).
More about this item
Keywords
Evapotranspiration partition; Vineyard; Soil evaporation; Transpiration; Soil evaporation coefficient; Basal crop coefficient;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:197:y:2018:i:c:p:19-33. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.