Accurate measurement of wind drift and evaporation losses could improve water application efficiency of sprinkler irrigation systems − A comparison of measuring techniques
Author
Abstract
Suggested Citation
DOI: 10.1016/j.agwat.2021.107209
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sarwar, Abid & Peters, R. Troy & Mehanna, Hani & Amini, Mohamma Zaman & Mohamed, Abdelmoneim Zakaria, 2019. "Evaluating water application efficiency of low and mid elevation spray application under changing weather conditions," Agricultural Water Management, Elsevier, vol. 221(C), pages 84-91.
- Seginer, Ido & Kantz, Dvora & Nir, Dov, 1991. "The distortion by wind of the distribution patterns of single sprinklers," Agricultural Water Management, Elsevier, vol. 19(4), pages 341-359, May.
- Yazar, Attila, 1984. "Evaporation and drift losses from sprinkler irrigation systems under various operating conditions," Agricultural Water Management, Elsevier, vol. 8(4), pages 439-449, February.
- Sadeghi, S.-H. & Peters, T. & Shafii, B. & Amini, M.Z. & Stöckle, C., 2017. "Continuous variation of wind drift and evaporation losses under a linear move irrigation system," Agricultural Water Management, Elsevier, vol. 182(C), pages 39-54.
- Playan, E. & Garrido, S. & Faci, J.M. & Galan, A., 2004. "Characterizing pivot sprinklers using an experimental irrigation machine," Agricultural Water Management, Elsevier, vol. 70(3), pages 177-193, December.
- Playan, E. & Salvador, R. & Faci, J.M. & Zapata, N. & Martinez-Cob, A. & Sanchez, I., 2005. "Day and night wind drift and evaporation losses in sprinkler solid-sets and moving laterals," Agricultural Water Management, Elsevier, vol. 76(3), pages 139-159, August.
- Mohamed, Abdelmoneim Z. & Peters, R. Troy & Zhu, Xingye & Sarwar, Abid, 2019. "Adjusting irrigation uniformity coefficients for unimportant variability on a small scale," Agricultural Water Management, Elsevier, vol. 213(C), pages 1078-1083.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Muhammad Waseem Rasheed & Jialiang Tang & Abid Sarwar & Suraj Shah & Naeem Saddique & Muhammad Usman Khan & Muhammad Imran Khan & Shah Nawaz & Redmond R. Shamshiri & Marjan Aziz & Muhammad Sultan, 2022. "Soil Moisture Measuring Techniques and Factors Affecting the Moisture Dynamics: A Comprehensive Review," Sustainability, MDPI, vol. 14(18), pages 1-23, September.
- Mattar, Mohamed A. & Roy, Dilip Kumar & Al-Ghobari, Hussein M. & Dewidar, Ahmed Z., 2022. "Machine learning and regression-based techniques for predicting sprinkler irrigation's wind drift and evaporation losses," Agricultural Water Management, Elsevier, vol. 265(C).
- Haijun Liu & Jie Chang & Xiaopei Tang & Jinping Zhang, 2022. "In Situ Measurement of Stemflow, Throughfall and Canopy Interception of Sprinkler Irrigation Water in a Wheat Field," Agriculture, MDPI, vol. 12(8), pages 1-15, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Baifus Manke, Emanuele & Nörenberg, Bernardo Gomes & Faria, Lessandro Coll & Tarjuelo, José Maria & Colombo, Alberto & Chagas Neta, Maria Clotilde Carré & Parfitt, José Maria Barbat, 2019. "Wind drift and evaporation losses of a mechanical lateral-move irrigation system: Oscillating plate versus fixed spray plate sprinklers," Agricultural Water Management, Elsevier, vol. 225(C).
- Sanchez, I. & Zapata, N. & Faci, J.M., 2010. "Combined effect of technical, meteorological and agronomical factors on solid-set sprinkler irrigation: II. Modifications of the wind velocity and of the water interception plane by the crop canopy," Agricultural Water Management, Elsevier, vol. 97(10), pages 1591-1601, October.
- Sarwar, Abid & Peters, R. Troy & Mehanna, Hani & Amini, Mohamma Zaman & Mohamed, Abdelmoneim Zakaria, 2019. "Evaluating water application efficiency of low and mid elevation spray application under changing weather conditions," Agricultural Water Management, Elsevier, vol. 221(C), pages 84-91.
- Sadeghi, S.-H. & Peters, T. & Shafii, B. & Amini, M.Z. & Stöckle, C., 2017. "Continuous variation of wind drift and evaporation losses under a linear move irrigation system," Agricultural Water Management, Elsevier, vol. 182(C), pages 39-54.
- Playan, E. & Salvador, R. & Faci, J.M. & Zapata, N. & Martinez-Cob, A. & Sanchez, I., 2005. "Day and night wind drift and evaporation losses in sprinkler solid-sets and moving laterals," Agricultural Water Management, Elsevier, vol. 76(3), pages 139-159, August.
- Sanchez, I. & Faci, J.M. & Zapata, N., 2011. "The effects of pressure, nozzle diameter and meteorological conditions on the performance of agricultural impact sprinklers," Agricultural Water Management, Elsevier, vol. 102(1), pages 13-24.
- Uddin, J. & Smith, R.J. & Hancock, N.H. & Foley, J.P., 2013. "Evaporation and sapflow dynamics during sprinkler irrigation of cotton," Agricultural Water Management, Elsevier, vol. 125(C), pages 35-45.
- Mattar, Mohamed A. & Roy, Dilip Kumar & Al-Ghobari, Hussein M. & Dewidar, Ahmed Z., 2022. "Machine learning and regression-based techniques for predicting sprinkler irrigation's wind drift and evaporation losses," Agricultural Water Management, Elsevier, vol. 265(C).
- Sheikhesmaeili, Omid & Montero, Jesús & Laserna, Santiago, 2016. "Analysis of water application with semi-portable big size sprinkler irrigation systems in semi-arid areas," Agricultural Water Management, Elsevier, vol. 163(C), pages 275-284.
- Aminpour, Younes & Dehghan, Darya & Playán, Enrique & Maroufpoor, Eisa, 2023. "Estimation of wind drift and evaporation losses of sprinkler irrigation systems using dimensional analysis," Agricultural Water Management, Elsevier, vol. 289(C).
- Iniesta, F. & Testi, L. & Goldhamer, D.A. & Fereres, E., 2008. "Quantifying reductions in consumptive water use under regulated deficit irrigation in pistachio (Pistacia vera L.)," Agricultural Water Management, Elsevier, vol. 95(7), pages 877-886, July.
- Cavero, Jose & Faci, Jose M. & Martínez-Cob, Antonio, 2016. "Relevance of sprinkler irrigation time of the day on alfalfa forage production," Agricultural Water Management, Elsevier, vol. 178(C), pages 304-313.
- Sanchez, I. & Zapata, N. & Faci, J.M., 2010. "Combined effect of technical, meteorological and agronomical factors on solid-set sprinkler irrigation: I. Irrigation performance and soil water recharge in alfalfa and maize," Agricultural Water Management, Elsevier, vol. 97(10), pages 1571-1581, October.
- Robles, O. & Latorre, B. & Zapata, N. & Burguete, J., 2019. "Self-calibrated ballistic model for sprinkler irrigation with a field experiments data base," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
- Tarjuelo, J. M. & Ortega, J. F. & Montero, J. & de Juan, J. A., 2000. "Modelling evaporation and drift losses in irrigation with medium size impact sprinklers under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 43(3), pages 263-284, April.
- Al-Ghobari, Hussein M. & El-Marazky, Mohamed S. & Dewidar, Ahmed Z. & Mattar, Mohamed A., 2018. "Prediction of wind drift and evaporation losses from sprinkler irrigation using neural network and multiple regression techniques," Agricultural Water Management, Elsevier, vol. 195(C), pages 211-221.
- Cavero, Jose & Faci, Jose M. & Medina, Eva T. & Martínez-Cob, Antonio, 2017. "Alfalfa forage production under solid-set sprinkler irrigation in a semiarid climate," Agricultural Water Management, Elsevier, vol. 191(C), pages 184-192.
- Maroufpoor, Saman & Shiri, Jalal & Maroufpoor, Eisa, 2019. "Modeling the sprinkler water distribution uniformity by data-driven methods based on effective variables," Agricultural Water Management, Elsevier, vol. 215(C), pages 63-73.
- Hui, Xin & Zheng, Yudong & Yan, Haijun, 2021. "Water distributions of low-pressure sprinklers as affected by the maize canopy under a centre pivot irrigation system," Agricultural Water Management, Elsevier, vol. 245(C).
- Franco-Luesma, Samuel & Álvaro-Fuentes, Jorge & Plaza-Bonilla, Daniel & Arrúe, José Luis & Cantero-Martínez, Carlos & Cavero, José, 2019. "Influence of irrigation time and frequency on greenhouse gas emissions in a solid-set sprinkler-irrigated maize under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 221(C), pages 303-311.
More about this item
Keywords
Wind drift; Evaporation losses; Electrical conductivity; Sprinkler irrigation; Droplet ballistic theory;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:258:y:2021:i:c:s0378377421004868. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.