IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v125y2013icp35-45.html
   My bibliography  Save this article

Evaporation and sapflow dynamics during sprinkler irrigation of cotton

Author

Listed:
  • Uddin, J.
  • Smith, R.J.
  • Hancock, N.H.
  • Foley, J.P.

Abstract

Quantifying the various components of evapotranspiration during sprinkler irrigation is not only challenging but also difficult to measure and validate using traditional methods. In this paper, measurements of the varying rates of ET using precision energy budget/eddy covariance measurements and sapflow in cotton before, during and after sprinkler irrigation are reported. The trials were carried out at a small scale using small impact type sprinkler irrigation system. Nondimensionalisation of the measured ET and sapflow rates with respect to atmospheric evaporative demand permitted superposition and averaging of multiple time series of data for each of the three phases of irrigation.

Suggested Citation

  • Uddin, J. & Smith, R.J. & Hancock, N.H. & Foley, J.P., 2013. "Evaporation and sapflow dynamics during sprinkler irrigation of cotton," Agricultural Water Management, Elsevier, vol. 125(C), pages 35-45.
  • Handle: RePEc:eee:agiwat:v:125:y:2013:i:c:p:35-45
    DOI: 10.1016/j.agwat.2013.04.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377413000899
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2013.04.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Uddin, J. & Hancock, N.H. & Smith, R.J. & Foley, J.P., 2013. "Measurement of evapotranspiration during sprinkler irrigation using a precision energy budget (Bowen ratio, eddy covariance) methodology," Agricultural Water Management, Elsevier, vol. 116(C), pages 89-100.
    2. Seginer, Ido & Kantz, Dvora & Nir, Dov, 1991. "The distortion by wind of the distribution patterns of single sprinklers," Agricultural Water Management, Elsevier, vol. 19(4), pages 341-359, May.
    3. Yazar, Attila, 1984. "Evaporation and drift losses from sprinkler irrigation systems under various operating conditions," Agricultural Water Management, Elsevier, vol. 8(4), pages 439-449, February.
    4. Tarjuelo, J. M. & Ortega, J. F. & Montero, J. & de Juan, J. A., 2000. "Modelling evaporation and drift losses in irrigation with medium size impact sprinklers under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 43(3), pages 263-284, April.
    5. Playan, E. & Salvador, R. & Faci, J.M. & Zapata, N. & Martinez-Cob, A. & Sanchez, I., 2005. "Day and night wind drift and evaporation losses in sprinkler solid-sets and moving laterals," Agricultural Water Management, Elsevier, vol. 76(3), pages 139-159, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaopei Tang & Haijun Liu & Li Yang & Lun Li & Jie Chang, 2022. "Energy Balance, Microclimate, and Crop Evapotranspiration of Winter Wheat ( Triticum aestivum L.) under Sprinkler Irrigation," Agriculture, MDPI, vol. 12(7), pages 1-23, June.
    2. Zhang, Yucui & Lei, Huimin & Zhao, Wenguang & Shen, Yanjun & Xiao, Dengpan, 2018. "Comparison of the water budget for the typical cropland and pear orchard ecosystems in the North China Plain," Agricultural Water Management, Elsevier, vol. 198(C), pages 53-64.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanchez, I. & Zapata, N. & Faci, J.M., 2010. "Combined effect of technical, meteorological and agronomical factors on solid-set sprinkler irrigation: II. Modifications of the wind velocity and of the water interception plane by the crop canopy," Agricultural Water Management, Elsevier, vol. 97(10), pages 1591-1601, October.
    2. Sadeghi, S.-H. & Peters, T. & Shafii, B. & Amini, M.Z. & Stöckle, C., 2017. "Continuous variation of wind drift and evaporation losses under a linear move irrigation system," Agricultural Water Management, Elsevier, vol. 182(C), pages 39-54.
    3. Sanchez, I. & Faci, J.M. & Zapata, N., 2011. "The effects of pressure, nozzle diameter and meteorological conditions on the performance of agricultural impact sprinklers," Agricultural Water Management, Elsevier, vol. 102(1), pages 13-24.
    4. Sheikhesmaeili, Omid & Montero, Jesús & Laserna, Santiago, 2016. "Analysis of water application with semi-portable big size sprinkler irrigation systems in semi-arid areas," Agricultural Water Management, Elsevier, vol. 163(C), pages 275-284.
    5. Iniesta, F. & Testi, L. & Goldhamer, D.A. & Fereres, E., 2008. "Quantifying reductions in consumptive water use under regulated deficit irrigation in pistachio (Pistacia vera L.)," Agricultural Water Management, Elsevier, vol. 95(7), pages 877-886, July.
    6. Baifus Manke, Emanuele & Nörenberg, Bernardo Gomes & Faria, Lessandro Coll & Tarjuelo, José Maria & Colombo, Alberto & Chagas Neta, Maria Clotilde Carré & Parfitt, José Maria Barbat, 2019. "Wind drift and evaporation losses of a mechanical lateral-move irrigation system: Oscillating plate versus fixed spray plate sprinklers," Agricultural Water Management, Elsevier, vol. 225(C).
    7. Playan, E. & Salvador, R. & Faci, J.M. & Zapata, N. & Martinez-Cob, A. & Sanchez, I., 2005. "Day and night wind drift and evaporation losses in sprinkler solid-sets and moving laterals," Agricultural Water Management, Elsevier, vol. 76(3), pages 139-159, August.
    8. Robles, O. & Latorre, B. & Zapata, N. & Burguete, J., 2019. "Self-calibrated ballistic model for sprinkler irrigation with a field experiments data base," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    9. Sarwar, Abid & Peters, R. Troy & Mehanna, Hani & Amini, Mohamma Zaman & Mohamed, Abdelmoneim Zakaria, 2019. "Evaluating water application efficiency of low and mid elevation spray application under changing weather conditions," Agricultural Water Management, Elsevier, vol. 221(C), pages 84-91.
    10. Sarwar, Abid & Peters, R. Troy & Shafeeque, Muhammad & Mohamed, Abdelmoneim & Arshad, Arfan & Ullah, Ikram & Saddique, Naeem & Muzammil, Muhammad & Aslam, Rana Ammar, 2021. "Accurate measurement of wind drift and evaporation losses could improve water application efficiency of sprinkler irrigation systems − A comparison of measuring techniques," Agricultural Water Management, Elsevier, vol. 258(C).
    11. Cavero, Jose & Faci, Jose M. & Martínez-Cob, Antonio, 2016. "Relevance of sprinkler irrigation time of the day on alfalfa forage production," Agricultural Water Management, Elsevier, vol. 178(C), pages 304-313.
    12. Sanchez, I. & Zapata, N. & Faci, J.M., 2010. "Combined effect of technical, meteorological and agronomical factors on solid-set sprinkler irrigation: I. Irrigation performance and soil water recharge in alfalfa and maize," Agricultural Water Management, Elsevier, vol. 97(10), pages 1571-1581, October.
    13. Zapata, N. & Playan, E. & Martinez-Cob, A. & Sanchez, I. & Faci, J.M. & Lecina, S., 2007. "From on-farm solid-set sprinkler irrigation design to collective irrigation network design in windy areas," Agricultural Water Management, Elsevier, vol. 87(2), pages 187-199, January.
    14. Xiang, Qingjiang & Qureshi, Waqar Ahmed & Tunio, Mazhar Hussain & Solangi, Kashif Ali & Xu, Zhengdian & Lakhiar, Imran Ali, 2021. "low-pressure drop size distribution characterization of impact sprinkler jet nozzles with and without aeration," Agricultural Water Management, Elsevier, vol. 243(C).
    15. Uddin, J. & Hancock, N.H. & Smith, R.J. & Foley, J.P., 2013. "Measurement of evapotranspiration during sprinkler irrigation using a precision energy budget (Bowen ratio, eddy covariance) methodology," Agricultural Water Management, Elsevier, vol. 116(C), pages 89-100.
    16. Tarjuelo, J. M. & Ortega, J. F. & Montero, J. & de Juan, J. A., 2000. "Modelling evaporation and drift losses in irrigation with medium size impact sprinklers under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 43(3), pages 263-284, April.
    17. Al-Ghobari, Hussein M. & El-Marazky, Mohamed S. & Dewidar, Ahmed Z. & Mattar, Mohamed A., 2018. "Prediction of wind drift and evaporation losses from sprinkler irrigation using neural network and multiple regression techniques," Agricultural Water Management, Elsevier, vol. 195(C), pages 211-221.
    18. Cavero, Jose & Faci, Jose M. & Medina, Eva T. & Martínez-Cob, Antonio, 2017. "Alfalfa forage production under solid-set sprinkler irrigation in a semiarid climate," Agricultural Water Management, Elsevier, vol. 191(C), pages 184-192.
    19. F. Carrión & J. Montero & J. Tarjuelo & M. Moreno, 2014. "Design of Sprinkler Irrigation Subunit of Minimum Cost with Proper Operation. Application at Corn Crop in Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 5073-5089, November.
    20. Maroufpoor, Saman & Shiri, Jalal & Maroufpoor, Eisa, 2019. "Modeling the sprinkler water distribution uniformity by data-driven methods based on effective variables," Agricultural Water Management, Elsevier, vol. 215(C), pages 63-73.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:125:y:2013:i:c:p:35-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.