IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i13p5428-d1422728.html
   My bibliography  Save this article

An Evaluation of Dryland Ulluco Cultivation Yields in the Face of Climate Change Scenarios in the Central Andes of Peru by Using the AquaCrop Model

Author

Listed:
  • Ricardo Flores-Marquez

    (Centro Experimental La Molina, Dirección de Supervisión y Monitoreo en las Estaciones Experimentales Agrarias, Instituto Nacional de Innovación Agraria (INIA), La Molina 1981, Lima 15024, Peru)

  • Jesús Vera-Vílchez

    (Estación Experimental Agraria Santa Ana, Dirección de Supervisión y Monitoreo en las Estaciones Experimentales Agrarias, Instituto Nacional de Innovación Agraria (INIA), Carretera Saños Grande—Hualahoyo Km 8, Huancayo 12007, Peru)

  • Patricia Verástegui-Martínez

    (Estación Experimental Agraria Santa Ana, Dirección de Supervisión y Monitoreo en las Estaciones Experimentales Agrarias, Instituto Nacional de Innovación Agraria (INIA), Carretera Saños Grande—Hualahoyo Km 8, Huancayo 12007, Peru)

  • Sphyros Lastra

    (Centro Experimental La Molina, Dirección de Supervisión y Monitoreo en las Estaciones Experimentales Agrarias, Instituto Nacional de Innovación Agraria (INIA), La Molina 1981, Lima 15024, Peru)

  • Richard Solórzano-Acosta

    (Centro Experimental La Molina, Dirección de Supervisión y Monitoreo en las Estaciones Experimentales Agrarias, Instituto Nacional de Innovación Agraria (INIA), La Molina 1981, Lima 15024, Peru
    Facultad de Ciencias Ambientales, Universidad Científica del Sur (UCSUR), Lima 15067, Peru)

Abstract

Ullucus tuberosus is an Andean region crop adapted to high-altitude environments and dryland cultivation. It is an essential resource that guarantees food security due to its carbohydrate, protein, and low-fat content. However, current change patterns in precipitation and temperatures warn of complex scenarios where climate change will affect this crop. Therefore, predicting these effects through simulation is a valuable tool for evaluating this crop’s sustainability. This study aims to evaluate ulluco’s crop yield under dryland conditions at 3914 m.a.s.l. considering climate change scenarios from 2024 to 2100 by using the AquaCrop model. Simulations were carried out using current meteorological data, crop agronomic information, and simulations for SSP1-2.6, SSP3-7.0, and SSP5-8.5 of CMIP 6. The results indicate that minimum temperature increases and seasonal precipitation exacerbation will significantly influence yields. Increases in rainfall and environmental CO 2 concentrations show an opportunity window for yield increment in the early stages. However, a negative trend is observed for 2050–2100, mainly due to crop temperature stress. These findings highlight the importance of developing more resistant ulluco varieties to heat stress conditions, adapting water management practices, continuing modeling climate change effects on crops, and investing in research on smallholder agriculture to reach Sustainable Development Goals 1, 2, and 13.

Suggested Citation

  • Ricardo Flores-Marquez & Jesús Vera-Vílchez & Patricia Verástegui-Martínez & Sphyros Lastra & Richard Solórzano-Acosta, 2024. "An Evaluation of Dryland Ulluco Cultivation Yields in the Face of Climate Change Scenarios in the Central Andes of Peru by Using the AquaCrop Model," Sustainability, MDPI, vol. 16(13), pages 1-22, June.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5428-:d:1422728
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/13/5428/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/13/5428/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Geerts, S. & Raes, D. & Garcia, M. & Taboada, C. & Miranda, R. & Cusicanqui, J. & Mhizha, T. & Vacher, J., 2009. "Modeling the potential for closing quinoa yield gaps under varying water availability in the Bolivian Altiplano," Agricultural Water Management, Elsevier, vol. 96(11), pages 1652-1658, November.
    2. Gennifer Meldrum & Dunja Mijatović & Wilfredo Rojas & Juana Flores & Milton Pinto & Grover Mamani & Eleuterio Condori & David Hilaquita & Helga Gruberg & Stefano Padulosi, 2018. "Climate change and crop diversity: farmers’ perceptions and adaptation on the Bolivian Altiplano," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(2), pages 703-730, April.
    3. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
    4. Wellens, Joost & Raes, Dirk & Fereres, Elias & Diels, Jan & Coppye, Cecilia & Adiele, Joy Geraldine & Ezui, Kodjovi Senam Guillaume & Becerra, Luis-Augusto & Selvaraj, Michael Gomez & Dercon, Gerd & H, 2022. "Calibration and validation of the FAO AquaCrop water productivity model for cassava (Manihot esculenta Crantz)," Agricultural Water Management, Elsevier, vol. 263(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jesus Puma-Cahua & Germán Belizario & Wilber Laqui & Roberto Alfaro & Edilberto Huaquisto & Elmer Calizaya, 2023. "Evaluating the Yields of the Rainfed Potato Crop under Climate Change Scenarios Using the AquaCrop Model in the Peruvian Altiplano," Sustainability, MDPI, vol. 16(1), pages 1-16, December.
    2. da Silva, Andre Luiz Biscaia Ribeiro & Dias, Henrique Boriolo & Gupta, Rishabh & Zotarelli, Lincoln & Asseng, Senthold & Dukes, Michael D. & Porter, Cheryl & Hoogenboom, Gerrit, 2024. "Assessing the impact of irrigation and nitrogen management on potato performance under varying climate in the state of Florida, USA," Agricultural Water Management, Elsevier, vol. 295(C).
    3. Geerts, S. & Raes, D. & Garcia, M., 2010. "Using AquaCrop to derive deficit irrigation schedules," Agricultural Water Management, Elsevier, vol. 98(1), pages 213-216, December.
    4. Xintian Ma & Xiangyi Wang & Yingbin He & Yan Zha & Huicong Chen & Shengnan Han, 2023. "Variability in Estimating Crop Model Genotypic Parameters: The Impact of Different Sampling Methods and Sizes," Agriculture, MDPI, vol. 13(12), pages 1-16, November.
    5. Vimbayi Grace Petrova Chimonyo & Tendai Polite Chibarabada & Dennis Junior Choruma & Richard Kunz & Sue Walker & Festo Massawe & Albert Thembinkosi Modi & Tafadzwanashe Mabhaudhi, 2022. "Modelling Neglected and Underutilised Crops: A Systematic Review of Progress, Challenges, and Opportunities," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
    6. Talebnejad, R. & Sepaskhah, A.R., 2015. "Effect of deficit irrigation and different saline groundwater depths on yield and water productivity of quinoa," Agricultural Water Management, Elsevier, vol. 159(C), pages 225-238.
    7. Fawen Li & Dong Yu & Yong Zhao, 2019. "Irrigation Scheduling Optimization for Cotton Based on the AquaCrop Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 39-55, January.
    8. Aline Nkurunziza & Dorine Intwarinkase Mutaganzwa & Willy Marcel Ndayitwayeko & Jacques Nkengurutse & Beth A. Kaplin & Irene Teixidor Toneu & Noelia Zafra-Calvo & Aida Cuni-Sanchez, 2023. "Local Observations of Climate Change and Adaptation Responses: A Case Study in the Mountain Region of Burundi-Rwanda," Land, MDPI, vol. 12(2), pages 1-14, January.
    9. Kansanga, Moses Mosonsieyiri & Kangmennaang, Joseph & Bezner Kerr, Rachel & Lupafya, Esther & Dakishoni, Laifolo & Luginaah, Isaac, 2021. "Agroecology and household production diversity and dietary diversity: Evidence from a five-year agroecological intervention in rural Malawi," Social Science & Medicine, Elsevier, vol. 288(C).
    10. Venkatesh Paramesh & Parveen Kumar & Ranjan Parajuli & Rosa Francaviglia & Kallakeri Kannappa Manohara & Vadivel Arunachalam & Trivesh Mayekar & Sulekha Toraskar, 2023. "A Life Cycle Assessment of Rice–Rice and Rice–Cowpea Cropping Systems in the West Coast of India," Land, MDPI, vol. 12(2), pages 1-14, February.
    11. Terence Dawson & Anita Perryman & Tom Osborne, 2016. "Modelling impacts of climate change on global food security," Climatic Change, Springer, vol. 134(3), pages 429-440, February.
    12. Yalong Du & Qiuping Fu & Pengrui Ai & Yingjie Ma & Yang Pan, 2024. "Modeling Comprehensive Deficit Irrigation Strategies for Drip-Irrigated Cotton Using AquaCrop," Agriculture, MDPI, vol. 14(8), pages 1-24, August.
    13. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Xiang, Youzhen & Liu, Xiaoqiang & Liao, Zhenqi & Abdelghany, Ahmed Elsayed & Zhang, Fucang & Li, Zhijun, 2022. "Evaluation of AquaCrop model for greenhouse cherry tomato with plastic film mulch under various water and nitrogen supplies," Agricultural Water Management, Elsevier, vol. 274(C).
    14. Liu, H.L. & Yang, J.Y. & Tan, C.S. & Drury, C.F. & Reynolds, W.D. & Zhang, T.Q. & Bai, Y.L. & Jin, J. & He, P. & Hoogenboom, G., 2011. "Simulating water content, crop yield and nitrate-N loss under free and controlled tile drainage with subsurface irrigation using the DSSAT model," Agricultural Water Management, Elsevier, vol. 98(6), pages 1105-1111, April.
    15. Dhouib, M. & Zitouna-Chebbi, R. & Prévot, L. & Molénat, J. & Mekki, I. & Jacob, F., 2022. "Multicriteria evaluation of the AquaCrop crop model in a hilly rainfed Mediterranean agrosystem," Agricultural Water Management, Elsevier, vol. 273(C).
    16. Geneille E. Greaves & Yu-Min Wang, 2017. "Identifying Irrigation Strategies for Improved Agricultural Water Productivity in Irrigated Maize Production through Crop Simulation Modelling," Sustainability, MDPI, vol. 9(4), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5428-:d:1422728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.