IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v295y2024ics0378377424001045.html
   My bibliography  Save this article

Assessing the impact of irrigation and nitrogen management on potato performance under varying climate in the state of Florida, USA

Author

Listed:
  • da Silva, Andre Luiz Biscaia Ribeiro
  • Dias, Henrique Boriolo
  • Gupta, Rishabh
  • Zotarelli, Lincoln
  • Asseng, Senthold
  • Dukes, Michael D.
  • Porter, Cheryl
  • Hoogenboom, Gerrit

Abstract

Optimizing irrigation and nitrogen (N) fertilizer management in irrigated potato crops grown on sandy soils in subtropical regions such as in northeastern Florida, USA is essential to sustain a high yield and to minimize leaching. N applications in this region typically occur at approximately 25–30 days prior to planting (Npre), at emergence (Neme), and at tuber initiation (Nti). However, recent studies suggest that applying N near planting (Npl) enhances fertilizer N use efficiency (FNUE). We combined experimentation with modeling to assess irrigation and N management options for potato in northeastern Florida. We first aimed to evaluate the DSSAT/CSM-SUBSTOR-Potato model using two-year irrigated field experiments conducted on sandy soils with variable N rates and application timings. CSM-SUBSTOR-Potato accurately simulated aboveground plus tuber dry weight [Relative root mean squared error (RRMSE) = 26.4%, Willmott’s index (d) = 0.98] and N accumulation (RRMSE = 28.6%, d = 0.97). Soil moisture and mineral N were captured well overall, but they were often underestimated due to a water table influence that is currently not considered in DSSAT. Subsequently, CSM-SUBSTOR-Potato was applied to simulate tuber yield, N leaching, and FNUE under scenarios of irrigation scheduling and N-fertilizer application (rate/timing) strategies, focusing on Npre versus Npl aiming to improve resource use efficiency. The simulations indicated that a target of 60% and 70% of the available soil water can be safely used as an irrigation strategy to achieve a high yield, while reducing irrigation water applied and N leached to the environment. Overall Npl increased crop N uptake by 10%, tuber yield by 7%, reduced N leached by 13%, and consequently increasing FNUE by 9%, compared to Npre across the irrigation treatments. Thus, Npl should be preferred in sandy soils and climate-risky subtropical environments, along with Neme and Nti as key timings to synchronize N supply with potato growth.

Suggested Citation

  • da Silva, Andre Luiz Biscaia Ribeiro & Dias, Henrique Boriolo & Gupta, Rishabh & Zotarelli, Lincoln & Asseng, Senthold & Dukes, Michael D. & Porter, Cheryl & Hoogenboom, Gerrit, 2024. "Assessing the impact of irrigation and nitrogen management on potato performance under varying climate in the state of Florida, USA," Agricultural Water Management, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:agiwat:v:295:y:2024:i:c:s0378377424001045
    DOI: 10.1016/j.agwat.2024.108769
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424001045
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108769?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Woli, Prem & Hoogenboom, Gerrit & Alva, Ashok, 2016. "Simulation of potato yield, nitrate leaching, and profit margins as influenced by irrigation and nitrogen management in different soils and production regions," Agricultural Water Management, Elsevier, vol. 171(C), pages 120-130.
    2. Asci, Serhat & Borisova, Tatiana & VanSickle, John J., 2015. "Role of economics in developing fertilizer best management practices," Agricultural Water Management, Elsevier, vol. 152(C), pages 251-261.
    3. Liao, Xiaolin & Su, Zhihua & Liu, Guodong & Zotarelli, Lincoln & Cui, Yuqi & Snodgrass, Crystal, 2016. "Impact of soil moisture and temperature on potato production using seepage and center pivot irrigation," Agricultural Water Management, Elsevier, vol. 165(C), pages 230-236.
    4. Arora, V.K. & Nath, J.C. & Singh, C.B., 2013. "Analyzing potato response to irrigation and nitrogen regimes in a sub-tropical environment using SUBSTOR-Potato model," Agricultural Water Management, Elsevier, vol. 124(C), pages 69-76.
    5. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
    6. Reyes-Cabrera, Joel & Zotarelli, Lincoln & Dukes, Michael D. & Rowland, Diane L. & Sargent, Steven A., 2016. "Soil moisture distribution under drip irrigation and seepage for potato production," Agricultural Water Management, Elsevier, vol. 169(C), pages 183-192.
    7. Silva, Andre Luiz Biscaia Ribeiro da & Zotarelli, Lincoln & Dukes, Michael D. & van Santen, Edzard & Asseng, Senthold, 2023. "Nitrogen fertilizer rate and timing of application for potato under different irrigation methods," Agricultural Water Management, Elsevier, vol. 283(C).
    8. Grados, D. & García, S. & Schrevens, E., 2020. "Assessing the potato yield gap in the Peruvian Central Andes," Agricultural Systems, Elsevier, vol. 181(C).
    9. Woli, Prem & Hoogenboom, Gerrit, 2018. "Simulating weather effects on potato yield, nitrate leaching, and profit margin in the US Pacific Northwest," Agricultural Water Management, Elsevier, vol. 201(C), pages 177-187.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
    2. Ferreira, Camila Jorge Bernabé & Zotarelli, Lincoln & Tormena, Cássio Antonio & Rens, Libby R. & Rowland, Diane L., 2017. "Effects of water table management on least limiting water range and potato root growth," Agricultural Water Management, Elsevier, vol. 186(C), pages 1-11.
    3. Tang, Jianzhao & Xiao, Dengpan & Wang, Jing & Fang, Quanxiao & Zhang, Jun & Bai, Huizi, 2021. "Optimizing water and nitrogen managements for potato production in the agro-pastoral ecotone in North China," Agricultural Water Management, Elsevier, vol. 253(C).
    4. Gitari, Harun I. & Gachene, Charles K.K. & Karanja, Nancy N. & Kamau, Solomon & Nyawade, Shadrack & Sharma, Kalpana & Schulte-Geldermann, Elmar, 2018. "Optimizing yield and economic returns of rain-fed potato (Solanum tuberosum L.) through water conservation under potato-legume intercropping systems," Agricultural Water Management, Elsevier, vol. 208(C), pages 59-66.
    5. Wang, Xiukang & Guo, Tao & Wang, Yi & Xing, Yingying & Wang, Yanfeng & He, Xiaolong, 2020. "Exploring the optimization of water and fertilizer management practices for potato production in the sandy loam soils of Northwest China based on PCA," Agricultural Water Management, Elsevier, vol. 237(C).
    6. Silva, Andre Luiz Biscaia Ribeiro da & Zotarelli, Lincoln & Dukes, Michael D. & van Santen, Edzard & Asseng, Senthold, 2023. "Nitrogen fertilizer rate and timing of application for potato under different irrigation methods," Agricultural Water Management, Elsevier, vol. 283(C).
    7. He, Yong & Liang, Hao & Hu, Kelin & Wang, Hongyuan & Hou, Lingling, 2018. "Modeling nitrogen leaching in a spring maize system under changing climate and genotype scenarios in arid Inner Mongolia, China," Agricultural Water Management, Elsevier, vol. 210(C), pages 316-323.
    8. Woli, Prem & Hoogenboom, Gerrit, 2018. "Simulating weather effects on potato yield, nitrate leaching, and profit margin in the US Pacific Northwest," Agricultural Water Management, Elsevier, vol. 201(C), pages 177-187.
    9. Samira Shayanmehr & Shida Rastegari Henneberry & Mahmood Sabouhi Sabouni & Naser Shahnoushi Foroushani, 2020. "Climate Change and Sustainability of Crop Yield in Dry Regions Food Insecurity," Sustainability, MDPI, vol. 12(23), pages 1-24, November.
    10. Xing, Yingying & Zhang, Teng & Jiang, Wenting & Li, Peng & Shi, Peng & Xu, Guoce & Cheng, Shengdong & Cheng, Yuting & Fan, Zhang & Wang, Xiukang, 2022. "Effects of irrigation and fertilization on different potato varieties growth, yield and resources use efficiency in the Northwest China," Agricultural Water Management, Elsevier, vol. 261(C).
    11. Liang, Hao & Lv, Haofeng & Batchelor, William D. & Lian, Xiaojuan & Wang, Zhengxiang & Lin, Shan & Hu, Kelin, 2020. "Simulating nitrate and DON leaching to optimize water and N management practices for greenhouse vegetable production systems," Agricultural Water Management, Elsevier, vol. 241(C).
    12. Wang, Haidong & Wang, Naijiang & Quan, Hao & Zhang, Fucang & Fan, Junliang & Feng, Hao & Cheng, Minghui & Liao, Zhenqi & Wang, Xiukang & Xiang, Youzhen, 2022. "Yield and water productivity of crops, vegetables and fruits under subsurface drip irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 269(C).
    13. Cheng, Minghui & Wang, Haidong & Zhang, Fucang & Wang, Xiukang & Liao, Zhenqi & Zhang, Shaohui & Yang, Qiliang & Fan, Junliang, 2023. "Effects of irrigation and fertilization regimes on tuber yield, water-nutrient uptake and productivity of potato under drip fertigation in sandy regions of northern China," Agricultural Water Management, Elsevier, vol. 287(C).
    14. Lutengano Mwinuka & Khamaldin Daud Mutabazi & Frieder Graef & Stefan Sieber & Jeremia Makindara & Anthony Kimaro & Götz Uckert, 2017. "Simulated willingness of farmers to adopt fertilizer micro-dosing and rainwater harvesting technologies in semi-arid and sub-humid farming systems in Tanzania," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(6), pages 1237-1253, December.
    15. Ojeda, Jonathan J. & Huth, Neil & Holzworth, Dean & Raymundo, Rubí & Zyskowski, Robert F. & Sinton, Sarah M. & Michel, Alexandre J. & Brown, Hamish E., 2021. "Assessing errors during simulation configuration in crop models – A global case study using APSIM-Potato," Ecological Modelling, Elsevier, vol. 458(C).
    16. Xintian Ma & Xiangyi Wang & Yingbin He & Yan Zha & Huicong Chen & Shengnan Han, 2023. "Variability in Estimating Crop Model Genotypic Parameters: The Impact of Different Sampling Methods and Sizes," Agriculture, MDPI, vol. 13(12), pages 1-16, November.
    17. Ricardo Flores-Marquez & Jesús Vera-Vílchez & Patricia Verástegui-Martínez & Sphyros Lastra & Richard Solórzano-Acosta, 2024. "An Evaluation of Dryland Ulluco Cultivation Yields in the Face of Climate Change Scenarios in the Central Andes of Peru by Using the AquaCrop Model," Sustainability, MDPI, vol. 16(13), pages 1-22, June.
    18. Wang, Jiaxin & He, Xinlin & Gong, Ping & Heng, Tong & Zhao, Danqi & Wang, Chunxia & Chen, Quan & Wei, Jie & Lin, Ping & Yang, Guang, 2024. "Response of fragrant pear quality and water productivity to lateral depth and irrigation amount," Agricultural Water Management, Elsevier, vol. 292(C).
    19. Wang, Haidong & Cheng, Minghui & Zhang, Shaohui & Fan, Junliang & Feng, Hao & Zhang, Fucang & Wang, Xiukang & Sun, Lijun & Xiang, Youzhen, 2021. "Optimization of irrigation amount and fertilization rate of drip-fertigated potato based on Analytic Hierarchy Process and Fuzzy Comprehensive Evaluation methods," Agricultural Water Management, Elsevier, vol. 256(C).
    20. Wang, Linlin & Wu, Wenyong & Xiao, Juan & Huang, Qiannan & Hu, Yaqi, 2021. "Effects of different drip irrigation modes on water use efficiency of pear trees in Northern China," Agricultural Water Management, Elsevier, vol. 245(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:295:y:2024:i:c:s0378377424001045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.