IDEAS home Printed from https://ideas.repec.org/a/zbw/espost/179965.html
   My bibliography  Save this article

Assessing the impacts of extreme agricultural droughts in China under climate and socioeconomic changes

Author

Listed:
  • Yu, Chaoqing
  • Huang, Xiao
  • Chen, Han
  • Huang, Guorui
  • Ni, Shaoqiang
  • Wright, Jonathon S.
  • Hall, Jim
  • Ciais, Philippe
  • Zhang, Jie
  • Xiao, Yuchen
  • Sun, Zhanli
  • Wang, Xuhui
  • Yu, Le

Abstract

Agricultural food production in China is deeply vulnerable to extreme droughts. Although there are many studies to evaluate this issue from different aspects, comprehensive assessments with full consideration of climate change, crop rotations, irrigation effects, and socioeconomic factors in broad scales have not been well addressed. Considering both the probability of drought occurrence and the consequential yield losses, here we propose an integrated approach for assessing past and future agricultural drought risks that relies on multimodel ensemble simulations calibrated for rice, maize, and wheat (RMW) in China. Our results show that irrigation has reduced drought-related yield losses by 31 ± 2\%; the largest reductions in food production were primarily attributable to socioeconomic factors rather than droughts during 1955–2014. Unsustainable water management, especially groundwater management, could potentially cause disastrous consequences in both food production and water supply in extreme events. Our simulations project a rise of 2.5 3.3\% in average rice, maize, and wheat productivity before 2050 but decrease thereafter if climate warming continues. The frequency of extreme agricultural droughts in China is projected to increase under all examined Representative Concentration Pathway (RCP). A current 100-year drought is projected to occur once every 30 years under RCP 2.6, once every 13 years under RCP 4.5, and once every 5 years under RCP 8.5. This increased occurrence of severe droughts would double the rate of drought-induced yield losses in the largest warming scenario. Policies for future food security should prioritize sustainable intensification and conservation of groundwater, as well as geographically balanced water resource and food production.

Suggested Citation

  • Yu, Chaoqing & Huang, Xiao & Chen, Han & Huang, Guorui & Ni, Shaoqiang & Wright, Jonathon S. & Hall, Jim & Ciais, Philippe & Zhang, Jie & Xiao, Yuchen & Sun, Zhanli & Wang, Xuhui & Yu, Le, 2018. "Assessing the impacts of extreme agricultural droughts in China under climate and socioeconomic changes," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 6, pages 689-703.
  • Handle: RePEc:zbw:espost:179965
    DOI: 10.1002/2017EF000768
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/179965/1/Yu_2018_agricultural_droughts_China.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.1002/2017EF000768?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Aiguo Dai, 2013. "Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(1), pages 52-58, January.
    2. Aiguo Dai, 2013. "Erratum: Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(2), pages 171-171, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Tongxin & Tang, Xuguang & Zheng, Chen & Gu, Qing & Wei, Jin & Ma, Mingguo, 2018. "Differences in ecosystem water-use efficiency among the typical croplands," Agricultural Water Management, Elsevier, vol. 209(C), pages 142-150.
    2. Sun, Zhanli & You, Liangzhi & Müller, Daniel, 2018. "Synthesis of agricultural land system change in China over the past 40 years," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 13(5), pages 473-479.
    3. Ameneh Mianabadi & Hashem Derakhshan & Kamran Davary & Seyed Majid Hasheminia & Markus Hrachowitz, 2020. "A Novel Idea for Groundwater Resource Management during Megadrought Events," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(5), pages 1743-1755, March.
    4. Shengli Liu & Wenbin Wu & Xiaoguang Yang & Peng Yang & Jing Sun, 2020. "Exploring drought dynamics and its impacts on maize yield in the Huang-Huai-Hai farming region of China," Climatic Change, Springer, vol. 163(1), pages 415-430, November.
    5. Shuang Li & Feili Wei & Zheng Wang & Jiashu Shen & Ze Liang & Huan Wang & Shuangcheng Li, 2021. "Spatial Heterogeneity and Complexity of the Impact of Extreme Climate on Vegetation in China," Sustainability, MDPI, vol. 13(10), pages 1-17, May.
    6. Min Cui & Jizhou Zhang & Xianli Xia, 2022. "The Relationship between Child Rearing Burden and Farmers’ Adoption of Climate Adaptive Technology: Taking Water-Saving Irrigation Technology as an Example," Agriculture, MDPI, vol. 12(6), pages 1-22, June.
    7. Jiwei Sun & Shuoben Bi & Bashar Bashir & Zhangxi Ge & Kexin Wu & Abdullah Alsalman & Brian Odhiambo Ayugi & Karam Alsafadi, 2023. "Historical Trends and Characteristics of Meteorological Drought Based on Standardized Precipitation Index and Standardized Precipitation Evapotranspiration Index over the Past 70 Years in China (1951–," Sustainability, MDPI, vol. 15(14), pages 1-25, July.
    8. Emileva, Begaiym & Kuhn, Lena & Bobojonov, Ihtiyor & Glauben, Thomas, 2023. "The role of smartphone-based weather information acquisition on climate change perception accuracy: Cross-country evidence from Kyrgyzstan, Mongolia and Uzbekistan," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 41, pages 1-1.
    9. Zhu, Rui & Hu, Tiesong & Wu, Fengyan & Liu, Yong & Zhou, Shan & Wang, Yanxuan, 2023. "Photosynthetic and hydraulic changes caused by water deficit and flooding stress increase rice’s intrinsic water-use efficiency," Agricultural Water Management, Elsevier, vol. 289(C).
    10. Wenli Qiang & Shuwen Niu & Xiang Wang & Cuiling Zhang & Aimin Liu & Shengkui Cheng, 2019. "Evolution of the Global Agricultural Trade Network and Policy Implications for China," Sustainability, MDPI, vol. 12(1), pages 1-16, December.
    11. Liang, Shuoshuo & Li, Lu & An, Ping & Chen, Suying & Shao, Liwei & Zhang, Xiying, 2021. "Spatial soil water and nutrient distribution affecting the water productivity of winter wheat," Agricultural Water Management, Elsevier, vol. 256(C).
    12. Qaisar Saddique & Huanjie Cai & Jiatun Xu & Ali Ajaz & Jianqiang He & Qiang Yu & Yunfei Wang & Hui Chen & Muhammad Imran Khan & De Li Liu & Liang He, 2020. "Analyzing adaptation strategies for maize production under future climate change in Guanzhong Plain, China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(8), pages 1523-1543, December.
    13. Quang-Tuong Vo & Jae-Min So & Deg-Hyo Bae, 2020. "An Integrated Framework for Extreme Drought Assessments Using the Natural Drought Index, Copula and Gi* Statistic," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(4), pages 1353-1368, March.
    14. Wang, Naijiang & Chen, Haixin & Ding, Dianyuan & Zhang, Tibin & Li, Cheng & Luo, Xiaoqi & Chu, Xiaosheng & Feng, Hao & Wei, Yongsheng & Siddique, Kadambot H.M., 2022. "Plastic film mulching affects field water balance components, grain yield, and water productivity of rainfed maize in the Loess Plateau, China: A synthetic analysis of multi-site observations," Agricultural Water Management, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jale Amanuel Dufera & Tewodros Addisu Yate & Tadesse Tujuba Kenea, 2023. "Spatiotemporal analysis of drought in Oromia regional state of Ethiopia over the period 1989 to 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1569-1609, June.
    2. Jinhua Wen & Yian Hua & Chenkai Cai & Shiwu Wang & Helong Wang & Xinyan Zhou & Jian Huang & Jianqun Wang, 2023. "Probabilistic Forecast and Risk Assessment of Flash Droughts Based on Numeric Weather Forecast: A Case Study in Zhejiang, China," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    3. Ashenafi Yimam Kassaye & Guangcheng Shao & Xiaojun Wang & Shiqing Wu, 2021. "Quantification of drought severity change in Ethiopia during 1952–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5096-5121, April.
    4. Gilles Dufrénot & William Ginn & Marc Pourroy, 2023. "ENSO Climate Patterns on Global Economic Conditions," AMSE Working Papers 2308, Aix-Marseille School of Economics, France.
    5. Dingcai Yin & Xiaohua Gou & Haijiang Yang & Kai Wang & Jie Liu & Yiran Zhang & Linlin Gao, 2023. "Elevation-dependent tree growth response to recent warming and drought on eastern Tibetan Plateau," Climatic Change, Springer, vol. 176(6), pages 1-18, June.
    6. Adeline Bichet & Arona Diedhiou & Benoit Hingray & Guillaume Evin & N’Datchoh Evelyne Touré & Klutse Nana Ama Browne & Kouakou Kouadio, 2020. "Assessing uncertainties in the regional projections of precipitation in CORDEX-AFRICA," Climatic Change, Springer, vol. 162(2), pages 583-601, September.
    7. Trnka, Miroslav & Vizina, Adam & Hanel, Martin & Balek, Jan & Fischer, Milan & Hlavinka, Petr & Semerádová, Daniela & Štěpánek, Petr & Zahradníček, Pavel & Skalák, Petr & Eitzinger, Josef & Dubrovský,, 2022. "Increasing available water capacity as a factor for increasing drought resilience or potential conflict over water resources under present and future climate conditions," Agricultural Water Management, Elsevier, vol. 264(C).
    8. Ding, Yugang & Xu, Jiangmin, 2023. "Global vulnerability of agricultural commodities to climate risk: Evidence from satellite data," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 669-687.
    9. Weili Duan & Bin He & Daniel Nover & Jingli Fan & Guishan Yang & Wen Chen & Huifang Meng & Chuanming Liu, 2016. "Floods and associated socioeconomic damages in China over the last century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 401-413, May.
    10. Sergio M. Vicente-Serrano & Miquel Tomas-Burguera & Santiago Beguería & Fergus Reig & Borja Latorre & Marina Peña-Gallardo & M. Yolanda Luna & Ana Morata & José C. González-Hidalgo, 2017. "A High Resolution Dataset of Drought Indices for Spain," Data, MDPI, vol. 2(3), pages 1-10, June.
    11. Jinquan Li & Junmin Pei & Changming Fang & Bo Li & Ming Nie, 2024. "Drought may exacerbate dryland soil inorganic carbon loss under warming climate conditions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Zefeng Chen & Weiguang Wang & Giovanni Forzieri & Alessandro Cescatti, 2024. "Transition from positive to negative indirect CO2 effects on the vegetation carbon uptake," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Parisa Paymard & Mohammad Bannayan & Reza Sadrabadi Haghighi, 2018. "Analysis of the climate change effect on wheat production systems and investigate the potential of management strategies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1237-1255, April.
    14. Marco Sannolo & Miguel Angel Carretero, 2019. "Dehydration constrains thermoregulation and space use in lizards," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-17, July.
    15. Zhiyuan Xiang & Meifang Zhao & U. S. Ogbodo, 2020. "Accumulation of Urban Insect Pests in China: 50 Years’ Observations on Camphor Tree ( Cinnamomum camphora )," Sustainability, MDPI, vol. 12(4), pages 1-15, February.
    16. Andrew M. Linke & Frank D. W. Witmer & John O’Loughlin, 2020. "Do people accurately report droughts? Comparison of instrument-measured and national survey data in Kenya," Climatic Change, Springer, vol. 162(3), pages 1143-1160, October.
    17. Sergio M. Vicente‐Serrano & Tim R. McVicar & Diego G. Miralles & Yuting Yang & Miquel Tomas‐Burguera, 2020. "Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    18. Jieming Chou & Tian Xian & Wenjie Dong & Yuan Xu, 2018. "Regional Temporal and Spatial Trends in Drought and Flood Disasters in China and Assessment of Economic Losses in Recent Years," Sustainability, MDPI, vol. 11(1), pages 1-17, December.
    19. Oyediran O. Oyebola & Jackson Efitre & Laban Musinguzi & Augustine E. Falaye, 2021. "Potential adaptation strategies for climate change impact among flood-prone fish farmers in climate hotspot Uganda," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 12761-12790, September.
    20. Xiuhua Cai & Wenqian Zhang & Cunjie Zhang & Qiang Zhang & Jingli Sun & Chen Cheng & Wenjie Fan & Ying Yu & Xiaoling Liu, 2022. "Identification and Spatial-Temporal Variation Characteristics of Regional Drought Processes in China," Land, MDPI, vol. 11(6), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:espost:179965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zbwkide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.