IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v287y2023ics0378377423002950.html
   My bibliography  Save this article

Using AquaCrop as a decision-support tool for improved irrigation management in the Sahel region

Author

Listed:
  • Alvar-Beltrán, Jorge
  • Saturnin, Coulibaly
  • Grégoire, Baki
  • Camacho, Jose Luís
  • Dao, Abdalla
  • Migraine, Jean Baptiste
  • Marta, Anna Dalla

Abstract

Operational systems providing irrigation advisories to agricultural extension workers are paramount, particularly in West Africa where the yield gap represents the greatest agriculture growth-led opportunity. The proposed framework for Burkina Faso, an irrigation decision support system (DSS), is based on in-situ weather and field observations necessary for feeding the atmosphere, soil, and crop modules of crop-water productivity models (e.g., AquaCrop). To optimize water resources, incoming irrigation and precipitation, and outgoing evapotranspiration are constantly monitored and adjusted. The findings of the proposed semi-automatic irrigation DSS indicate that water stresses affecting the canopy cover and stomatal closure are minimized if the proposed irrigation schemes are generated and improved with five-day weather observations. The source of uncertainty in crop models’ evapotranspiration estimations is reduced by systematically comparing the observed crop evapotranspiration (ETc) with historical ETc records. An increase in yields is observed in all studied crops, from 1960 to 2018 kg/ha (tomato dry yields), from 2571 to 2799 kg/ha (maize), and from 1279 to 1385 kg/ha (quinoa) when comparing the 2020–21 and 2021–22 experiments. Results show an optimization of water resources, with a higher evapotranspired water productivity (WPET, expressed as dry weight) when comparing the two experiments, from 0.86 to 0.97 kg/m3 for tomato, from 0.85 to 0.86 kg/m3 for maize, and from 0.67 to 0.73 kg/m3 for quinoa, respectively in 2020–21 and 2021–22. The proposed irrigation DSS can be used to inform extension workers and technical agronomic experts about real-time crop water requirements and, thus, assist the Climate Risk and Early Warning Systems (CREWS) initiative that aims to improve access to weather information for decision-support in agriculture. Afterwards, extension agents can catalyze irrigation advisories and support farmers improve irrigation management at the field level to, ultimately, obtain higher yields.

Suggested Citation

  • Alvar-Beltrán, Jorge & Saturnin, Coulibaly & Grégoire, Baki & Camacho, Jose Luís & Dao, Abdalla & Migraine, Jean Baptiste & Marta, Anna Dalla, 2023. "Using AquaCrop as a decision-support tool for improved irrigation management in the Sahel region," Agricultural Water Management, Elsevier, vol. 287(C).
  • Handle: RePEc:eee:agiwat:v:287:y:2023:i:c:s0378377423002950
    DOI: 10.1016/j.agwat.2023.108430
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423002950
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108430?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Molden, David & Oweis, Theib & Steduto, Pasquale & Bindraban, Prem & Hanjra, Munir A. & Kijne, Jacob, 2010. "Improving agricultural water productivity: Between optimism and caution," Agricultural Water Management, Elsevier, vol. 97(4), pages 528-535, April.
    2. Mohamed Sallah, Abdoul-Hamid & Tychon, Bernard & Piccard, Isabelle & Gobin, Anne & Van Hoolst, Roel & Djaby, Bakary & Wellens, Joost, 2019. "Batch-processing of AquaCrop plug-in for rainfed maize using satellite derived Fractional Vegetation Cover data," Agricultural Water Management, Elsevier, vol. 217(C), pages 346-355.
    3. Wellens, Joost & Raes, Dirk & Traore, Farid & Denis, Antoine & Djaby, Bakary & Tychon, Bernard, 2013. "Performance assessment of the FAO AquaCrop model for irrigated cabbage on farmer plots in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 127(C), pages 40-47.
    4. Jacovides, C. P. & Kontoyiannis, H., 1995. "Statistical procedures for the evaluation of evapotranspiration computing models," Agricultural Water Management, Elsevier, vol. 27(3-4), pages 365-371, July.
    5. Lozano, David & Mateos, Luciano, 2008. "Usefulness and limitations of decision support systems for improving irrigation scheme management," Agricultural Water Management, Elsevier, vol. 95(4), pages 409-418, April.
    6. de Fraiture, Charlotte & Kouali, Gael Ndanga & Sally, Hilmy & Kabre, Priva, 2014. "Pirates or pioneers? Unplanned irrigation around small reservoirs in Burkina Faso," Agricultural Water Management, Elsevier, vol. 131(C), pages 212-220.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lecina, S. & Isidoro, D. & Playán, E. & Aragüés, R., 2010. "Irrigation modernization and water conservation in Spain: The case of Riegos del Alto Aragón," Agricultural Water Management, Elsevier, vol. 97(10), pages 1663-1675, October.
    2. T. Fowe & I. Nouiri & B. Ibrahim & H. Karambiri & J. Paturel, 2015. "OPTIWAM: An Intelligent Tool for Optimizing Irrigation Water Management in Coupled Reservoir–Groundwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3841-3861, August.
    3. Jackson, T.M. & Hanjra, Munir A. & Khan, S. & Hafeez, M.M., 2011. "Building a climate resilient farm: A risk based approach for understanding water, energy and emissions in irrigated agriculture," Agricultural Systems, Elsevier, vol. 104(9), pages 729-745.
    4. Liu, Jing & Hertel, Thomas & Lammers, Richard & Prusevich, Alexander & Baldos, Uris Lantz & Grogan, Danielle & Frolking, Steve, 2016. "Achieving Sustainable Irrigation Water Withdrawals: Global Impacts on Food Production and Land Use," Conference papers 332691, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    5. Tendai Polite Chibarabada & Albert Thembinkosi Modi & Tafadzwanashe Mabhaudhi, 2017. "Nutrient Content and Nutritional Water Productivity of Selected Grain Legumes in Response to Production Environment," IJERPH, MDPI, vol. 14(11), pages 1-17, October.
    6. Ghahroodi, E. Mokari & Noory, H. & Liaghat, A.M., 2015. "Performance evaluation study and hydrologic and productive analysis of irrigation systems at the Qazvin irrigation network (Iran)," Agricultural Water Management, Elsevier, vol. 148(C), pages 189-195.
    7. Padilla-Díaz, C.M. & Rodriguez-Dominguez, C.M. & Hernandez-Santana, V. & Perez-Martin, A. & Fernandes, R.D.M. & Montero, A. & García, J.M. & Fernández, J.E., 2018. "Water status, gas exchange and crop performance in a super high density olive orchard under deficit irrigation scheduled from leaf turgor measurements," Agricultural Water Management, Elsevier, vol. 202(C), pages 241-252.
    8. Feng Huang & Baoguo Li, 2020. "What is the Redline Water Withdrawal for Crop Production in China?—Projection to 2030 Derived from the Past Twenty-Year Trajectory," Sustainability, MDPI, vol. 12(10), pages 1-14, May.
    9. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    10. Ahmad, Mirza Junaid & Iqbal, Muhammad Anjum & Choi, Kyung Sook, 2020. "Climate-driven constraints in sustaining future wheat yield and water productivity," Agricultural Water Management, Elsevier, vol. 231(C).
    11. Tsakmakis, I.D. & Gikas, G.D. & Sylaios, G.K., 2021. "Integration of Sentinel-derived NDVI to reduce uncertainties in the operational field monitoring of maize," Agricultural Water Management, Elsevier, vol. 255(C).
    12. Ayantunde, Augustine A. & Cofie, Olufunke. & Barron, Jennie, 2018. "Multiple uses of small reservoirs in crop-livestock agro-ecosystems of Volta basin: Implications for livestock management," Agricultural Water Management, Elsevier, vol. 204(C), pages 81-90.
    13. Lee, Seung Oh & Jung, Younghun, 2018. "Efficiency of water use and its implications for a water-food nexus in the Aral Sea Basin," Agricultural Water Management, Elsevier, vol. 207(C), pages 80-90.
    14. Tahiri, Adel Zeggaf & Anyoji, H. & Yasuda, H., 2006. "Fixed and variable light extinction coefficients for estimating plant transpiration and soil evaporation under irrigated maize," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 186-192, July.
    15. Eric Njuki & Boris E. Bravo-Ureta, 2019. "Examining irrigation productivity in U.S. agriculture using a single-factor approach," Journal of Productivity Analysis, Springer, vol. 51(2), pages 125-136, June.
    16. Andrew J. Wiltshire & Gillian Kay & Jemma L. Gornall & Richard A. Betts, 2013. "The Impact of Climate, CO 2 and Population on Regional Food and Water Resources in the 2050s," Sustainability, MDPI, vol. 5(5), pages 1-23, May.
    17. Luxon Nhamo & James Magidi & Adolph Nyamugama & Alistair D. Clulow & Mbulisi Sibanda & Vimbayi G. P. Chimonyo & Tafadzwanashe Mabhaudhi, 2020. "Prospects of Improving Agricultural and Water Productivity through Unmanned Aerial Vehicles," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    18. Haiming Yan & Jinyan Zhan & Bing Liu & Yongwei Yuan, 2014. "Model Estimation of Water Use Efficiency for Soil Conservation in the Lower Heihe River Basin, Northwest China during 2000–2008," Sustainability, MDPI, vol. 6(9), pages 1-17, September.
    19. López-Urrea, R. & Domínguez, A. & Pardo, J.J. & Montoya, F. & García-Vila, M. & Martínez-Romero, A., 2020. "Parameterization and comparison of the AquaCrop and MOPECO models for a high-yielding barley cultivar under different irrigation levels," Agricultural Water Management, Elsevier, vol. 230(C).
    20. Awada, Hassan & Di Prima, Simone & Sirca, Costantino & Giadrossich, Filippo & Marras, Serena & Spano, Donatella & Pirastru, Mario, 2022. "A remote sensing and modeling integrated approach for constructing continuous time series of daily actual evapotranspiration," Agricultural Water Management, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:287:y:2023:i:c:s0378377423002950. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.