Author
Listed:
- Wang, Weizhen
- Ma, Chunfeng
- Wang, Xufeng
- Feng, Jiaojiao
- Dong, Leilei
- Kang, Jian
- Jin, Rui
- Li, Xingze
Abstract
Validating the satellite soil moisture products is always an active research topic for the application of the products and improvement of the retrieval algorithms, attracting extensive attention. Nevertheless, seldom existing validation activities focus on the validation of high-resolution soil moisture products at the fine scale. To this end, an experiment was conducted in the middle stream of the Heihe River Basin in northwestern China in August to October of 2021, aiming to validate high-resolution satellite remote sensing products of soil moisture. The paper introduces the design, composite, and preliminary results of the experiment. A soil moisture observation network was established with two kinds of sensors (CS616 and Stevens Hydra Probe) validated against soil core measurements. Several synchronized campaigns were performed, and data were collected to validate the SMAP/Sentinel-1 L2 Radiometer/Radar 30-Second Scene 3 and 1 km EASE-Grid Soil Moisture (SPL2SMAP_S) products. Besides, an optical trapezoid model (OPTRAM) and collected Sentinel-2 data were applied to estimate soil moisture and to map irrigated area. Preliminary analyses show that: 1) Steven probes perform best, with an RMSE = 0.040 m3m−3 and ubRMSE=0.034 m3m−3; 2) Both the SPL2SMAP_S products at 3 km and 1 km show large RMSE (0.128 m3m−3 for 3 km and 0.158 m3m−3 for 1 km) and ubRMSE (0.115 m3m−3 for 3 km and 0.158 m3m−3 for 1 km); 3) The OPTRAM retrievals over bare surface present relatively smaller RMSE (0.06 m3m−3) and ubRMSE (0.057 m3m−3), while retrievals over vegetated croplands present a relatively large RMSE/ubRMSE (0.083/0.083 m3m−3), and the retrievals can identify the irrigated area at field scale. Overall, the experiment provides fruitful methodologies and datasets for the validation of high-resolution remote sensing products, benefiting the development and improvement of soil moisture retrieval algorithms and products to support irrigation scheduling and management at a precision agricultural scale in the future.
Suggested Citation
Wang, Weizhen & Ma, Chunfeng & Wang, Xufeng & Feng, Jiaojiao & Dong, Leilei & Kang, Jian & Jin, Rui & Li, Xingze, 2024.
"A soil moisture experiment for validating high-resolution satellite products and monitoring irrigation at agricultural field scale,"
Agricultural Water Management, Elsevier, vol. 304(C).
Handle:
RePEc:eee:agiwat:v:304:y:2024:i:c:s0378377424004074
DOI: 10.1016/j.agwat.2024.109071
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:304:y:2024:i:c:s0378377424004074. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.