IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v298y2024ics0378377424001914.html
   My bibliography  Save this article

Combing transfer learning with the OPtical TRApezoid Model (OPTRAM) to diagnosis small-scale field soil moisture from hyperspectral data

Author

Listed:
  • Du, Ruiqi
  • Xiang, Youzhen
  • Zhang, Fucang
  • Chen, Junying
  • Shi, Hongzhao
  • Liu, Hao
  • Yang, Xiaofei
  • Yang, Ning
  • Yang, Xizhen
  • Wang, Tianyang
  • Wu, Yuxiao

Abstract

Accurate, timely, and continuous soil moisture information is helpful for crop stress diagnosis and irrigation management decision. OPtical TRApezoid Model (OPTRAM) based on optical satellite data has been proven to be an effective method for assessing soil moisture status. However, the applicability of OPTRAM to small-scale field soil moisture assessment remains to be explored. In this study, we propose a strategy for the genetically parameterized OPTRAM and evaluate its applicability on Unmanned Aerial Vehicle (UAV) high-resolution hyspectral data. The results showed that: (1) When OPTRAM was used to genetically parameterized with PROSAIL generated dataset, 46 characteristic narrowband bands (|R|= 0.52–0.78) were determined in the spectral region of near infrared (NIR) (750–850 nm) and SWIR (1060–1080 and 1450–1500 nm); (2) By fine-tuned soil moisture estimation model using transfer learning strategy, the reliable soil moisture estimation was achieved in three crops (R2=0.57–0.64; RMSE=0.008–0.022 m3m−3);(3) Compared to soil moisture estimation model using a single spectral region (NIR or SWIR), the DSWC model that combine NIR and SWIR was more effective for tracking soil moisture; (4) The scale effect was observed when the fine-tuned soil moisture estimation model was applied on the high-resolution UAV images. The model performance was stable in pixel size of 1–7 cm and began to drop at pixel size of 11 cm. The above results advance the application of OPTRAM on small farmland soil moisture assessment and demonstrate the application potential of OPTRAM on narrow-band hyperspectral data. This study provides a new candidate for the use of hyperspectral data to estimate soil moisture, and scientific support for precision agriculture and irrigation scheduling.

Suggested Citation

  • Du, Ruiqi & Xiang, Youzhen & Zhang, Fucang & Chen, Junying & Shi, Hongzhao & Liu, Hao & Yang, Xiaofei & Yang, Ning & Yang, Xizhen & Wang, Tianyang & Wu, Yuxiao, 2024. "Combing transfer learning with the OPtical TRApezoid Model (OPTRAM) to diagnosis small-scale field soil moisture from hyperspectral data," Agricultural Water Management, Elsevier, vol. 298(C).
  • Handle: RePEc:eee:agiwat:v:298:y:2024:i:c:s0378377424001914
    DOI: 10.1016/j.agwat.2024.108856
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424001914
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108856?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ren, Shoujia & Guo, Bin & Wang, Zhijun & Wang, Juan & Fang, Quanxiao & Wang, Jianlin, 2022. "Optimized spectral index models for accurately retrieving soil moisture (SM) of winter wheat under water stress," Agricultural Water Management, Elsevier, vol. 261(C).
    2. El-Hendawy, Salah E. & Al-Suhaibani, Nasser A. & Elsayed, Salah & Hassan, Wael M. & Dewir, Yaser Hassan & Refay, Yahya & Abdella, Kamel A., 2019. "Potential of the existing and novel spectral reflectance indices for estimating the leaf water status and grain yield of spring wheat exposed to different irrigation rates," Agricultural Water Management, Elsevier, vol. 217(C), pages 356-373.
    3. Amin, M.G. Mostofa & Mahbub, S.M. Mubtasim & Hasan, Md. Moudud & Pervin, Wafa & Sharmin, Jinat & Hossain, Md. Delwar, 2023. "Plant–water relations in subtropical maize fields under mulching and organic fertilization," Agricultural Water Management, Elsevier, vol. 286(C).
    4. Ma, Chunfeng & Johansen, Kasper & McCabe, Matthew F., 2022. "Combining Sentinel-2 data with an optical-trapezoid approach to infer within-field soil moisture variability and monitor agricultural production stages," Agricultural Water Management, Elsevier, vol. 274(C).
    5. Shao, Guomin & Han, Wenting & Zhang, Huihui & Liu, Shouyang & Wang, Yi & Zhang, Liyuan & Cui, Xin, 2021. "Mapping maize crop coefficient Kc using random forest algorithm based on leaf area index and UAV-based multispectral vegetation indices," Agricultural Water Management, Elsevier, vol. 252(C).
    6. Grados, D. & Reynarfaje, X. & Schrevens, E., 2020. "A methodological approach to assess canopy NDVI–based tomato dynamics under irrigation treatments," Agricultural Water Management, Elsevier, vol. 240(C).
    7. Uniyal, Bhumika & Dietrich, Jörg & Vasilakos, Christos & Tzoraki, Ourania, 2017. "Evaluation of SWAT simulated soil moisture at catchment scale by field measurements and Landsat derived indices," Agricultural Water Management, Elsevier, vol. 193(C), pages 55-70.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng, Juntao & Pan, Shijia & Zhou, Mingu & Gao, Wen & Yan, Yuncai & Niu, Zijie & Han, Wenting, 2023. "Optimum sampling window size and vegetation index selection for low-altitude multispectral estimation of root soil moisture content for Xuxiang Kiwifruit," Agricultural Water Management, Elsevier, vol. 282(C).
    2. Rozenstein, Offer & Fine, Lior & Malachy, Nitzan & Richard, Antoine & Pradalier, Cedric & Tanny, Josef, 2023. "Data-driven estimation of actual evapotranspiration to support irrigation management: Testing two novel methods based on an unoccupied aerial vehicle and an artificial neural network," Agricultural Water Management, Elsevier, vol. 283(C).
    3. Newton Muhury & Armando A. Apan & Tek N. Marasani & Gebiaw T. Ayele, 2022. "Modelling Floodplain Vegetation Response to Groundwater Variability Using the ArcSWAT Hydrological Model, MODIS NDVI Data, and Machine Learning," Land, MDPI, vol. 11(12), pages 1-23, November.
    4. Adel H. Elmetwalli & Yasser S. A. Mazrou & Andrew N. Tyler & Peter D. Hunter & Osama Elsherbiny & Zaher Mundher Yaseen & Salah Elsayed, 2022. "Assessing the Efficiency of Remote Sensing and Machine Learning Algorithms to Quantify Wheat Characteristics in the Nile Delta Region of Egypt," Agriculture, MDPI, vol. 12(3), pages 1-21, February.
    5. Luís Guilherme Teixeira Crusiol & Liang Sun & Zheng Sun & Ruiqing Chen & Yongfeng Wu & Juncheng Ma & Chenxi Song, 2022. "In-Season Monitoring of Maize Leaf Water Content Using Ground-Based and UAV-Based Hyperspectral Data," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    6. Song, Xingyang & Zhou, Guangsheng & He, Qijing & Zhou, Huailin, 2020. "Stomatal limitations to photosynthesis and their critical Water conditions in different growth stages of maize under water stress," Agricultural Water Management, Elsevier, vol. 241(C).
    7. Qian Cheng & Honggang Xu & Shuaipeng Fei & Zongpeng Li & Zhen Chen, 2022. "Estimation of Maize LAI Using Ensemble Learning and UAV Multispectral Imagery under Different Water and Fertilizer Treatments," Agriculture, MDPI, vol. 12(8), pages 1-21, August.
    8. Shao, Guomin & Han, Wenting & Zhang, Huihui & Zhang, Liyuan & Wang, Yi & Zhang, Yu, 2023. "Prediction of maize crop coefficient from UAV multisensor remote sensing using machine learning methods," Agricultural Water Management, Elsevier, vol. 276(C).
    9. Peng, Zhigong & Lin, Shaozhe & Zhang, Baozhong & Wei, Zheng & Liu, Lu & Han, Nana & Cai, Jiabing & Chen, He, 2020. "Winter Wheat Canopy Water Content Monitoring Based on Spectral Transforms and “Three-edge” Parameters," Agricultural Water Management, Elsevier, vol. 240(C).
    10. Xingyang Song & Guangsheng Zhou & Qijin He, 2021. "Critical Leaf Water Content for Maize Photosynthesis under Drought Stress and Its Response to Rewatering," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    11. Elmetwalli, Adel H. & Tyler, Andrew N., 2020. "Estimation of maize properties and differentiating moisture and nitrogen deficiency stress via ground – Based remotely sensed data," Agricultural Water Management, Elsevier, vol. 242(C).
    12. Zhang, Yong-Rong & Shang, Guo-Fei & Leng, Pei & Ma, Chunfeng & Ma, Jianwei & Zhang, Xia & Li, Zhao-Liang, 2023. "Estimation of quasi-full spatial coverage soil moisture with fine resolution in China from the combined use of ERA5-Land reanalysis and TRIMS land surface temperature product," Agricultural Water Management, Elsevier, vol. 275(C).
    13. Zhang, Yu & Han, Wenting & Zhang, Huihui & Niu, Xiaotao & Shao, Guomin, 2023. "Evaluating maize evapotranspiration using high-resolution UAV-based imagery and FAO-56 dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 275(C).
    14. Shaeden Gokool & Maqsooda Mahomed & Richard Kunz & Alistair Clulow & Mbulisi Sibanda & Vivek Naiken & Kershani Chetty & Tafadzwanashe Mabhaudhi, 2023. "Crop Monitoring in Smallholder Farms Using Unmanned Aerial Vehicles to Facilitate Precision Agriculture Practices: A Scoping Review and Bibliometric Analysis," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    15. Crusiol, Luís Guilherme Teixeira & Nanni, Marcos Rafael & Furlanetto, Renato Herrig & Sibaldelli, Rubson Natal Ribeiro & Sun, Liang & Gonçalves, Sergio Luiz & Foloni, José Salvador Simonetto & Mertz-H, 2023. "Assessing the sensitive spectral bands for soybean water status monitoring and soil moisture prediction using leaf-based hyperspectral reflectance," Agricultural Water Management, Elsevier, vol. 277(C).
    16. Uniyal, Bhumika & Dietrich, Jörg, 2019. "Modifying Automatic Irrigation in SWAT for Plant Water Stress scheduling," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    17. Aliloo, Jamileh & Abbasi, Enayat & Karamidehkordi, Esmail & Ghanbari Parmehr, Ebadat & Canavari, Maurizio, 2024. "Dos and Don'ts of using drone technology in the crop fields," Technology in Society, Elsevier, vol. 76(C).
    18. Maria Theresia Sri Budiastuti & Djoko Purnomo & Bambang Pujiasmanto & Desy Setyaningrum, 2023. "Response of Maize Yield and Nutrient Uptake to Indigenous Organic Fertilizer from Corn Cobs," Agriculture, MDPI, vol. 13(2), pages 1-11, January.
    19. Bounajra, Afaf & Guemmat, Kamal El & Mansouri, Khalifa & Akef, Fatiha, 2024. "Towards efficient irrigation management at field scale using new technologies: A systematic literature review," Agricultural Water Management, Elsevier, vol. 295(C).
    20. Yulin Shen & Benoît Mercatoris & Zhen Cao & Paul Kwan & Leifeng Guo & Hongxun Yao & Qian Cheng, 2022. "Improving Wheat Yield Prediction Accuracy Using LSTM-RF Framework Based on UAV Thermal Infrared and Multispectral Imagery," Agriculture, MDPI, vol. 12(6), pages 1-13, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:298:y:2024:i:c:s0378377424001914. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.