IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v275y2023ics0378377422005376.html
   My bibliography  Save this article

Estimation of quasi-full spatial coverage soil moisture with fine resolution in China from the combined use of ERA5-Land reanalysis and TRIMS land surface temperature product

Author

Listed:
  • Zhang, Yong-Rong
  • Shang, Guo-Fei
  • Leng, Pei
  • Ma, Chunfeng
  • Ma, Jianwei
  • Zhang, Xia
  • Li, Zhao-Liang

Abstract

Knowledge of surface soil moisture (SSM) at various scales is essential for understanding energy and water exchange between the atmosphere and land surface. In this study, we propose a practical approach based on the synergy of all-weather land surface temperature (LST) and reanalysis data to generate a daily/1-km SSM with quasi-full spatial coverage. In this approach, the day/night LST difference and SSM derived from the ERA5-Land with a spatial resolution of 0.1° were first used to develop linear relationships between them under various vegetation densities (sparse, medium, and dense) for four dominant land cover types (forest, cropland, grassland, and barren) in China. The relationships were subsequently used in an all-weather 1-km LST product to generate an initial daily/1-km SSM dataset in 2019. In addition, two blended microwave-based SSM products were applied to correct the initial dataset by assuming that the aggregated SSM values within the coarse scale were unbiased when compared with the original microwave-based SSM products. Furthermore, two blended microwave-based SSM products were used to correct the initial dataset with the assumption that aggregated SSM values within the coarse scale are unbiased when compared to the original microwave-based SSM products. Finally, the estimated SSM were preliminarily evaluated against the ground in-situ measurements at cropland under different aridity conditions. A satisfactory accuracy was obtained with an unbiased root mean square error (ubRMSE) of ∼0.05 m3/m3, which is not only close to the ubRMSE requirements of 0.04 m3/m3 for the SSM estimates in most practical applications, but is also characterized with quasi-full spatial coverage.

Suggested Citation

  • Zhang, Yong-Rong & Shang, Guo-Fei & Leng, Pei & Ma, Chunfeng & Ma, Jianwei & Zhang, Xia & Li, Zhao-Liang, 2023. "Estimation of quasi-full spatial coverage soil moisture with fine resolution in China from the combined use of ERA5-Land reanalysis and TRIMS land surface temperature product," Agricultural Water Management, Elsevier, vol. 275(C).
  • Handle: RePEc:eee:agiwat:v:275:y:2023:i:c:s0378377422005376
    DOI: 10.1016/j.agwat.2022.107990
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422005376
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107990?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Laibao Liu & Lukas Gudmundsson & Mathias Hauser & Dahe Qin & Shuangcheng Li & Sonia I. Seneviratne, 2020. "Soil moisture dominates dryness stress on ecosystem production globally," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    2. Ma, Chunfeng & Johansen, Kasper & McCabe, Matthew F., 2022. "Combining Sentinel-2 data with an optical-trapezoid approach to infer within-field soil moisture variability and monitor agricultural production stages," Agricultural Water Management, Elsevier, vol. 274(C).
    3. Prashant K. Srivastava, 2017. "Satellite Soil Moisture: Review of Theory and Applications in Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3161-3176, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. George Tsakiris, 2017. "Facets of Modern Water Resources Management: Prolegomena," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2899-2904, August.
    2. Wei Wei & Jiping Wang & Libang Ma & Xufeng Wang & Binbin Xie & Junju Zhou & Haoyan Zhang, 2024. "Global Drought-Wetness Conditions Monitoring Based on Multi-Source Remote Sensing Data," Land, MDPI, vol. 13(1), pages 1-19, January.
    3. Riao, Dao & Guga, Suri & Bao, Yongbin & Liu, Xingping & Tong, Zhijun & Zhang, Jiquan, 2023. "Non-overlap of suitable areas of agro-climatic resources and main planting areas is the main reason for potato drought disaster in Inner Mongolia, China," Agricultural Water Management, Elsevier, vol. 275(C).
    4. Sourav Mukherjee & Ashok Kumar Mishra & Jakob Zscheischler & Dara Entekhabi, 2023. "Interaction between dry and hot extremes at a global scale using a cascade modeling framework," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Yaoping Wang & Jiafu Mao & Forrest M. Hoffman & Céline J. W. Bonfils & Hervé Douville & Mingzhou Jin & Peter E. Thornton & Daniel M. Ricciuto & Xiaoying Shi & Haishan Chen & Stan D. Wullschleger & Shi, 2022. "Quantification of human contribution to soil moisture-based terrestrial aridity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Guo, Youzheng & Ma, Yingjun & Ding, Changjun & Di, Nan & Liu, Yang & Tan, Jianbiao & Zhang, Shusen & Yu, Weichen & Gao, Guixi & Duan, Jie & Xi, Benye & Li, Ximeng, 2023. "Plant hydraulics provide guidance for irrigation management in mature polar plantation," Agricultural Water Management, Elsevier, vol. 275(C).
    7. Li, Bingbing & Yang, Yi & Li, Zhi, 2021. "Combined effects of multiple factors on spatiotemporally varied soil moisture in China’s Loess Plateau," Agricultural Water Management, Elsevier, vol. 258(C).
    8. Ouyang, Lei & Lu, Longwei & Wang, Chunlin & Li, Yanqiong & Wang, Jingyi & Zhao, Xiuhua & Gao, Lei & Zhu, Liwei & Ni, Guangyan & Zhao, Ping, 2022. "A 14-year experiment emphasizes the important role of heat factors in regulating tree transpiration, growth, and water use efficiency of Schima superba in South China," Agricultural Water Management, Elsevier, vol. 273(C).
    9. Haibo Lu & Zhangcai Qin & Shangrong Lin & Xiuzhi Chen & Baozhang Chen & Bin He & Jing Wei & Wenping Yuan, 2022. "Large influence of atmospheric vapor pressure deficit on ecosystem production efficiency," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    10. Arias, María & Notarnicola, Claudia & Campo-Bescós, Miguel Ángel & Arregui, Luis Miguel & Álvarez-Mozos, Jesús, 2023. "Evaluation of soil moisture estimation techniques based on Sentinel-1 observations over wheat fields," Agricultural Water Management, Elsevier, vol. 287(C).
    11. Jing Peng & Fuqiang Yang & Li Dan & Xiba Tang, 2022. "Estimation of China’s Contribution to Global Greening over the Past Three Decades," Land, MDPI, vol. 11(3), pages 1-16, March.
    12. Ariane Mirabel & Martin P. Girardin & Juha Metsaranta & Danielle Way & Peter B. Reich, 2023. "Increasing atmospheric dryness reduces boreal forest tree growth," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Zhu, Jie & Chen, Shanghong & Zhang, Qingwen & Mei, Xurong, 2023. "Multi-year vertical and life cycle impacts of C-N management on soil moisture regimes," Agricultural Water Management, Elsevier, vol. 290(C).
    14. Saman Rabiei & Ehsan Jalilvand & Massoud Tajrishy, 2021. "A Method to Estimate Surface Soil Moisture and Map the Irrigated Cropland Area Using Sentinel-1 and Sentinel-2 Data," Sustainability, MDPI, vol. 13(20), pages 1-17, October.
    15. Ning Chen & Yifei Zhang & Fenghui Yuan & Changchun Song & Mingjie Xu & Qingwei Wang & Guangyou Hao & Tao Bao & Yunjiang Zuo & Jianzhao Liu & Tao Zhang & Yanyu Song & Li Sun & Yuedong Guo & Hao Zhang &, 2023. "Warming-induced vapor pressure deficit suppression of vegetation growth diminished in northern peatlands," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. Zheng Fu & Philippe Ciais & I. Colin Prentice & Pierre Gentine & David Makowski & Ana Bastos & Xiangzhong Luo & Julia K. Green & Paul C. Stoy & Hui Yang & Tomohiro Hajima, 2022. "Atmospheric dryness reduces photosynthesis along a large range of soil water deficits," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Wang, Chunyu & Li, Sien & Wu, Mousong & Zhang, Wenxin & Guo, Zhenyu & Huang, Siyu & Yang, Danni, 2023. "Co-regulation of temperature and moisture in the irrigated agricultural ecosystem productivity," Agricultural Water Management, Elsevier, vol. 275(C).
    18. Krishna, Dyvavani K. & Watham, Taibanganba & Padalia, Hitendra & Srinet, Ritika & Nandy, Subrata, 2023. "Improved gross primary productivity estimation using semi empirical (PRELES) model for moist Indian sal forest," Ecological Modelling, Elsevier, vol. 475(C).
    19. Cailin Wang & Enliang Guo & Yongfang Wang & Buren Jirigala & Yao Kang & Ye Zhang, 2023. "Spatiotemporal variations in drought and waterlogging and their effects on maize yields at different growth stages in Jilin Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 155-180, August.
    20. George P. Petropoulos & Prashant K. Srivastava & Maria Piles & Simon Pearson, 2018. "Earth Observation-Based Operational Estimation of Soil Moisture and Evapotranspiration for Agricultural Crops in Support of Sustainable Water Management," Sustainability, MDPI, vol. 10(1), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:275:y:2023:i:c:s0378377422005376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.