IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13524-d1236701.html
   My bibliography  Save this article

Management Soil Zones, Irrigation, and Fertigation Effects on Yield and Oil Content of Coriandrum sativum L. Using Precision Agriculture with Fuzzy k-Means Clustering

Author

Listed:
  • Agathos Filintas

    (Department of Agricultural Technologists, University of Thessaly, Campus Gaiopolis, 41500 Larisa, Greece)

  • Nikolaos Gougoulias

    (Department of Agricultural Technologists, University of Thessaly, Campus Gaiopolis, 41500 Larisa, Greece)

  • Nektarios Kourgialas

    (Hellenic Agricultural Organization (ELGO Dimitra), Institute of Olive, Tree Subtropical Crops and Viticulture, Water Recourses-Irrigation & Environmental Geoinformatics Lab., Agrokipio, 73100 Chania, Greece)

  • Eleni Hatzichristou

    (Department of Agricultural Technologists, University of Thessaly, Campus Gaiopolis, 41500 Larisa, Greece)

Abstract

Precision agriculture (PA), management zone (MZ) strategies at the field level, soil analyses, deficit irrigation (DI), and fertilizer Variable Rate Application (VRA) are management strategies that help farmers improve crop production, fertilizer use efficiency, and irrigation water use efficiency (IWUE). In order to further investigate these management strategies, the effects of four soil MZ treatments, which were delineated using PA with fuzzy k-means clustering, two irrigation levels [IR1:FI = full drip irrigation (>90% of θ f c ), IR2:VDI = variable deficit drip irrigation (60–75% of θ f c )], and four VRA fertilizations were studied on coriander yield and essential oil content in a two-year research project in Greece. A daily soil-water-crop-atmosphere (SWCA) balance model and a daily depletion model were developed using sensor measurements (climatic parameter sensors as well as soil moisture sensors). Unbalanced one-way ANOVA ( p = 0.05) statistical analysis results revealed that correct delineation of MZs by PA with fuzzy k-means clustering, if applied under deficit irrigation and VRA fertilization, leads to increased essential oil content of coriander with statistically significant differences (SSD) and lower fruit yields; however, without SSD differences among management zones, when appropriate VRA fertilization is applied to leverage soil nutrient levels through the different fuzzy clustered MZs for farming sustainability. Moreover, VDI compared to full irrigation in different MZs yields 22.85% to 29.44% in water savings, thus raising IWUE (up to 64.112 kg m −3 ), nitrogen efficiency (up to 5.623), and N-P-K fertilizer productivity (up to 5.329).

Suggested Citation

  • Agathos Filintas & Nikolaos Gougoulias & Nektarios Kourgialas & Eleni Hatzichristou, 2023. "Management Soil Zones, Irrigation, and Fertigation Effects on Yield and Oil Content of Coriandrum sativum L. Using Precision Agriculture with Fuzzy k-Means Clustering," Sustainability, MDPI, vol. 15(18), pages 1-33, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13524-:d:1236701
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13524/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13524/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    2. Holsten, Anne & Vetter, Tobias & Vohland, Katrin & Krysanova, Valentina, 2009. "Impact of climate change on soil moisture dynamics in Brandenburg with a focus on nature conservation areas," Ecological Modelling, Elsevier, vol. 220(17), pages 2076-2087.
    3. Michael Küppers & Laurence O’Rourke & Dominique Bockelée-Morvan & Vladimir Zakharov & Seungwon Lee & Paul von Allmen & Benoît Carry & David Teyssier & Anthony Marston & Thomas Müller & Jacques Crovisi, 2014. "Localized sources of water vapour on the dwarf planet (1) Ceres," Nature, Nature, vol. 505(7484), pages 525-527, January.
    4. Quirin Schiermeier, 2014. "The parched planet: Water on tap," Nature, Nature, vol. 510(7505), pages 326-328, June.
    5. Houxi Zhang & Shunyao Zhuang & Haiyan Qian & Feng Wang & Haibao Ji, 2015. "Spatial Variability of the Topsoil Organic Carbon in the Moso Bamboo Forests of Southern China in Association with Soil Properties," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-17, March.
    6. Ierna, Anita & Pandino, Gaetano & Lombardo, Sara & Mauromicale, Giovanni, 2011. "Tuber yield, water and fertilizer productivity in early potato as affected by a combination of irrigation and fertilization," Agricultural Water Management, Elsevier, vol. 101(1), pages 35-41.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ierna, Anita & Mauromicale, Giovanni, 2012. "Tuber yield and irrigation water productivity in early potatoes as affected by irrigation regime," Agricultural Water Management, Elsevier, vol. 115(C), pages 276-284.
    2. Komlan Koudahe & Aleksey Y. Sheshukov & Jonathan Aguilar & Koffi Djaman, 2021. "Irrigation-Water Management and Productivity of Cotton: A Review," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    3. Stepanovic, Strahinja & Rudnick, Daran & Kruger, Greg, 2021. "Impact of maize hybrid selection on water productivity under deficit irrigation in semiarid western Nebraska," Agricultural Water Management, Elsevier, vol. 244(C).
    4. Singh, Sukhbir & Angadi, Sangamesh V. & Grover, Kulbhushan K. & Hilaire, Rolston St. & Begna, Sultan, 2016. "Effect of growth stage based irrigation on soil water extraction and water use efficiency of spring safflower cultivars," Agricultural Water Management, Elsevier, vol. 177(C), pages 432-439.
    5. Andarzian, B. & Bannayan, M. & Steduto, P. & Mazraeh, H. & Barati, M.E. & Barati, M.A. & Rahnama, A., 2011. "Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran," Agricultural Water Management, Elsevier, vol. 100(1), pages 1-8.
    6. Tang, Jiankai & Yang, Qiliang & Liang, Jiaping & Wang, Haidong & Yue, Xiulu, 2024. "Water management, planting slope indicators, and economic benefit analysis for Panax notoginseng production decision under shaded and rain-shelter cultivation: A three-year sloping fields experiment," Agricultural Water Management, Elsevier, vol. 291(C).
    7. Koffi Djaman & Suat Irmak & Komlan Koudahe & Samuel Allen, 2021. "Irrigation Management in Potato ( Solanum tuberosum L.) Production: A Review," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
    8. Saseendran, S.A. & Ahuja, Lajpat R. & Ma, Liwang & Trout, Thomas J. & McMaster, Gregory S. & Nielsen, David C. & Ham, Jay M. & Andales, Allan A. & Halvorson, Ardel D. & Chávez, José L. & Fang, Quanxia, 2015. "Developing and normalizing average corn crop water production functions across years and locations using a system model," Agricultural Water Management, Elsevier, vol. 157(C), pages 65-77.
    9. Iqbal, M. Anjum & Bodner, G. & Heng, L.K. & Eitzinger, J. & Hassan, A., 2010. "Assessing yield optimization and water reduction potential for summer-sown and spring-sown maize in Pakistan," Agricultural Water Management, Elsevier, vol. 97(5), pages 731-737, May.
    10. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    11. Giulio Sperandio & Mauro Pagano & Andrea Acampora & Vincenzo Civitarese & Carla Cedrola & Paolo Mattei & Roberto Tomasone, 2022. "Deficit Irrigation for Efficiency and Water Saving in Poplar Plantations," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    12. Han, Ming & Zhang, Huihui & DeJonge, Kendall C. & Comas, Louise H. & Gleason, Sean, 2018. "Comparison of three crop water stress index models with sap flow measurements in maize," Agricultural Water Management, Elsevier, vol. 203(C), pages 366-375.
    13. Motazedian, Azam & Kazemeini, Seyed Abdolreza & Bahrani, Mohammad Jafar, 2019. "Sweet corn growth and GrainYield as influenced by irrigation and wheat residue management," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    14. Zhang, Liyuan & Zhang, Huihui & Zhu, Qingzhen & Niu, Yaxiao, 2023. "Further investigating the performance of crop water stress index for maize from baseline fluctuation, effects of environmental factors, and variation of critical value," Agricultural Water Management, Elsevier, vol. 285(C).
    15. Wang, Wendi & Straffelini, Eugenio & Tarolli, Paolo, 2023. "Steep-slope viticulture: The effectiveness of micro-water storage in improving the resilience to weather extremes," Agricultural Water Management, Elsevier, vol. 286(C).
    16. Amarasingha, R.P.R.K. & Suriyagoda, L.D.B. & Marambe, B. & Gaydon, D.S. & Galagedara, L.W. & Punyawardena, R. & Silva, G.L.L.P. & Nidumolu, U. & Howden, M., 2015. "Simulation of crop and water productivity for rice (Oryza sativa L.) using APSIM under diverse agro-climatic conditions and water management techniques in Sri Lanka," Agricultural Water Management, Elsevier, vol. 160(C), pages 132-143.
    17. Geerts, S. & Raes, D. & Garcia, M., 2010. "Using AquaCrop to derive deficit irrigation schedules," Agricultural Water Management, Elsevier, vol. 98(1), pages 213-216, December.
    18. Trevor W. Crosby & Yi Wang, 2021. "Effects of Different Irrigation Management Practices on Potato ( Solanum tuberosum L.)," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    19. Angelica Melone & Leah L. Bremer & Susan E. Crow & Zoe Hastings & Kawika B. Winter & Tamara Ticktin & Yoshimi M. Rii & Maile Wong & Kānekoa Kukea-Shultz & Sheree J. Watson & Clay Trauernicht, 2021. "Assessing Baseline Carbon Stocks for Forest Transitions: A Case Study of Agroforestry Restoration from Hawaiʻi," Agriculture, MDPI, vol. 11(3), pages 1-17, February.
    20. Comas, Louise H. & Trout, Thomas J. & DeJonge, Kendall C. & Zhang, Huihui & Gleason, Sean M., 2019. "Water productivity under strategic growth stage-based deficit irrigation in maize," Agricultural Water Management, Elsevier, vol. 212(C), pages 433-440.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13524-:d:1236701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.