IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v98y2011i8p1249-1261.html
   My bibliography  Save this article

Development and evaluation of the SoilClim model for water balance and soil climate estimates

Author

Listed:
  • Hlavinka, Petr
  • Trnka, Miroslav
  • Balek, Jan
  • Semerádová, Daniela
  • Hayes, Michael
  • Svoboda, Mark
  • Eitzinger, Josef
  • Mozný, Martin
  • Fischer, Milan
  • Hunt, Eric
  • Zalud, Zdenek

Abstract

The newly developed SoilClim model is introduced as a tool for estimates of reference (ETo) and actual (ETa) evapotranspiration, presence of snow cover, soil temperature at 0.5 m depth and the soil moisture course within two defined layers. It enables one to determine the soil moisture and temperature regimes according to the United States Department of Agriculture (USDA) soil taxonomy. SoilClim works with daily time steps and requires maximum and minimum air temperature, global solar radiation, precipitation, vapor pressure and wind speed as meteorological inputs as well as basic information about the soil properties and vegetation cover. The behavior of SoilClim was assessed using observations at 5 stations in central Europe and 15 stations in the central U.S. The modeled ETo was compared with atmometers so that the coefficient of determination (R2) was 0.91 and root mean square error (RMSE) was 0.53 mm. The estimated ETa was compared against eddy-covariance and Bowen ratio measurements (R2 varied from 0.74 to 0.80; RMSE varied from 0.49 to 0.58 mm). The soil temperature (at 0.5 m depth) was estimated with good accuracy (R2 varied from 0.94 to 0.97; RMSE varied from 1.23 °C to 2.95 °C). The ability of the SoilClim model to mimic the observed soil water dynamics was carefully investigated (relative root mean square error rRMSE varied from 2.8% to 34.0%). The analysis conducted showed that SoilClim gives reasonable estimates of evaluated parameters at a majority of the included stations. Finally, a spatial analysis of soil moisture and temperature regimes (according to USDA) within the region of the Czech Republic and the northern part of Austria under present conditions was conducted and diagnosed the appearance of Perudic, Subhumid Udic, Dry Tempudic (the highest frequency), Wet Tempustic and Typic Tempustic. The simulated mean soil temperature (0.5 m depth) varied from less than 7.0 °C to 11.0 °C throughout this region. Based on these results, the SoilClim model is a useful and suitable tool for water balance and soil climate assessment on local and regional scales.

Suggested Citation

  • Hlavinka, Petr & Trnka, Miroslav & Balek, Jan & Semerádová, Daniela & Hayes, Michael & Svoboda, Mark & Eitzinger, Josef & Mozný, Martin & Fischer, Milan & Hunt, Eric & Zalud, Zdenek, 2011. "Development and evaluation of the SoilClim model for water balance and soil climate estimates," Agricultural Water Management, Elsevier, vol. 98(8), pages 1249-1261, May.
  • Handle: RePEc:eee:agiwat:v:98:y:2011:i:8:p:1249-1261
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377411000643
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Holsten, Anne & Vetter, Tobias & Vohland, Katrin & Krysanova, Valentina, 2009. "Impact of climate change on soil moisture dynamics in Brandenburg with a focus on nature conservation areas," Ecological Modelling, Elsevier, vol. 220(17), pages 2076-2087.
    2. Topp, Cairistiona F. E. & Doyle, Christopher J., 1996. "Simulating the impact of global warming on milk and forage production in Scotland: 1. The effects on dry-matter yield of grass and grass-white clover swards," Agricultural Systems, Elsevier, vol. 52(2-3), pages 213-242.
    3. Utset, Angel & Farre, Imma & Martinez-Cob, Antonio & Cavero, Jose, 2004. "Comparing Penman-Monteith and Priestley-Taylor approaches as reference-evapotranspiration inputs for modeling maize water-use under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 66(3), pages 205-219, May.
    4. Gavilán, P. & Castillo-Llanque, F., 2009. "Estimating reference evapotranspiration with atmometers in a semiarid environment," Agricultural Water Management, Elsevier, vol. 96(3), pages 465-472, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ludmila Floková & Tomáš Mikita, 2023. "Landscape-Scale Long-Term Drought Prevalence Mapping for Small Municipalities Adaptation, the Czech Republic Case Study," Land, MDPI, vol. 12(10), pages 1-21, October.
    2. Jurečka, František & Fischer, Milan & Hlavinka, Petr & Balek, Jan & Semerádová, Daniela & Bláhová, Monika & Anderson, Martha C. & Hain, Christopher & Žalud, Zdeněk & Trnka, Miroslav, 2021. "Potential of water balance and remote sensing-based evapotranspiration models to predict yields of spring barley and winter wheat in the Czech Republic," Agricultural Water Management, Elsevier, vol. 256(C).
    3. František Jurečka & Martin Možný & Jan Balek & Zdeněk Žalud & Miroslav Trnka, 2019. "Comparison of Methods for the Assessment of Fire Danger in the Czech Republic," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 67(5), pages 1285-1295.
    4. Potopová, V. & Trifan, T. & Trnka, M. & De Michele, C. & Semerádová, D. & Fischer, M. & Meitner, J. & Musiolková, M. & Muntean, N. & Clothier, B., 2023. "Copulas modelling of maize yield losses – drought compound events using the multiple remote sensing indices over the Danube River Basin," Agricultural Water Management, Elsevier, vol. 280(C).
    5. Potopová, V. & Trnka, M. & Vizina, A. & Semerádová, D. & Balek, J. & Chawdhery, M.R.A. & Musiolková, M. & Pavlík, P. & Možný, M. & Štěpánek, P. & Clothier, B., 2022. "Projection of 21st century irrigation water requirements for sensitive agricultural crop commodities across the Czech Republic," Agricultural Water Management, Elsevier, vol. 262(C).
    6. Žalud, Zdeněk & Hlavinka, Petr & Prokeš, Karel & Semerádová, Daniela & Balek Jan, & Trnka, Miroslav, 2017. "Impacts of water availability and drought on maize yield – A comparison of 16 indicators," Agricultural Water Management, Elsevier, vol. 188(C), pages 126-135.
    7. Trnka, Miroslav & Vizina, Adam & Hanel, Martin & Balek, Jan & Fischer, Milan & Hlavinka, Petr & Semerádová, Daniela & Štěpánek, Petr & Zahradníček, Pavel & Skalák, Petr & Eitzinger, Josef & Dubrovský,, 2022. "Increasing available water capacity as a factor for increasing drought resilience or potential conflict over water resources under present and future climate conditions," Agricultural Water Management, Elsevier, vol. 264(C).
    8. Hong, Eun-Mi & Nam, Won-Ho & Choi, Jin-Yong & Pachepsky, Yakov A., 2016. "Projected irrigation requirements for upland crops using soil moisture model under climate change in South Korea," Agricultural Water Management, Elsevier, vol. 165(C), pages 163-180.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yi & Zeng, Wenzhi & Ao, Chang & Lei, Guoqing & Wu, Jingwei & Huang, Jiesheng & Gaiser, Thomas & Srivastava, Amit Kumar, 2022. "Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth," Agricultural Water Management, Elsevier, vol. 270(C).
    2. Ali Rahimikhoob, 2014. "Comparison between M5 Model Tree and Neural Networks for Estimating Reference Evapotranspiration in an Arid Environment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 657-669, February.
    3. Iris Vogeler & Christof Kluß & Tammo Peters & Friedhelm Taube, 2023. "How Much Complexity Is Required for Modelling Grassland Production at Regional Scales?," Land, MDPI, vol. 12(2), pages 1-18, January.
    4. Gong, Xuewen & Qiu, Rangjian & Ge, Jiankun & Bo, Guokui & Ping, Yinglu & Xin, Qingsong & Wang, Shunsheng, 2021. "Evapotranspiration partitioning of greenhouse grown tomato using a modified Priestley–Taylor model," Agricultural Water Management, Elsevier, vol. 247(C).
    5. Lewis, D. R. & McGechan, M. B. & McTaggart, I. P., 2003. "Simulating field-scale nitrogen management scenarios involving fertiliser and slurry applications," Agricultural Systems, Elsevier, vol. 76(1), pages 159-180, April.
    6. Ali Rahimikhoob & Mahmood Behbahani & Javad Fakheri, 2012. "An Evaluation of Four Reference Evapotranspiration Models in a Subtropical Climate," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(10), pages 2867-2881, August.
    7. Li, Xianyue & Yang, Peiling & Ren, Shumei & Li, Yunkai & Liu, Honglu & Du, Jun & Li, Pingfeng & Wang, Caiyuan & Ren, Liang, 2010. "Modeling cherry orchard evapotranspiration based on an improved dual-source model," Agricultural Water Management, Elsevier, vol. 98(1), pages 12-18, December.
    8. Qiu, Rangjian & Liu, Chunwei & Cui, Ningbo & Wu, Youjie & Wang, Zhenchang & Li, Gen, 2019. "Evapotranspiration estimation using a modified Priestley-Taylor model in a rice-wheat rotation system," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    9. Fouad H. Saeed & Mahmoud S. Al-Khafaji & Furat A. Mahmood Al-Faraj, 2021. "Sensitivity of Irrigation Water Requirement to Climate Change in Arid and Semi-Arid Regions towards Sustainable Management of Water Resources," Sustainability, MDPI, vol. 13(24), pages 1-21, December.
    10. Sumaiya Jarin Ahammed & Rajab Homsi & Najeebullah Khan & Shamsuddin Shahid & Mohammed Sanusi Shiru & Morteza Mohsenipour & Kamal Ahmed & Nadeem Nawaz & Nor Eliza Alias & Ali Yuzir, 2020. "Assessment of changing pattern of crop water stress in Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4619-4637, June.
    11. Alexandris, S. & Kerkides, P. & Liakatas, A., 2006. "Daily reference evapotranspiration estimates by the "Copais" approach," Agricultural Water Management, Elsevier, vol. 82(3), pages 371-386, April.
    12. MB Dastagiri & Anjani Sneha Vajrala, 2018. "Financing Climate Change on Global Agriculture-An Overview," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 12(5), pages 148-153, July.
    13. Landeras, Gorka & Ortiz-Barredo, Amaia & López, Jose Javier, 2008. "Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain)," Agricultural Water Management, Elsevier, vol. 95(5), pages 553-565, May.
    14. Shrestha, Shailesh & Hennessy, Thia & Abdalla, Mohamed & Forristal, Dermot & Jones, Michael B., 2014. "Determining Short Term Responses of Irish Dairy Farms under Climate Change," Journal of International Agricultural Trade and Development, Journal of International Agricultural Trade and Development, vol. 63(3).
    15. Saadon, Tal & Lazarovitch, Naftali & Jerszurki, Daniela & Tas, Eran, 2021. "Predicting net radiation in naturally ventilated greenhouses based on outside global solar radiation for reference evapotranspiration estimation," Agricultural Water Management, Elsevier, vol. 257(C).
    16. Utset, Angel & Martinez-Cob, Antonio & Farre, Imma & Cavero, Jose, 2006. "Simulating the effects of extreme dry and wet years on the water use of flooding-irrigated maize in a Mediterranean landplane," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 77-84, September.
    17. Dokoohaki, Hamze & Gheysari, Mahdi & Mousavi, Sayed-Farhad & Zand-Parsa, Shahrokh & Miguez, Fernando E. & Archontoulis, Sotirios V. & Hoogenboom, Gerrit, 2016. "Coupling and testing a new soil water module in DSSAT CERES-Maize model for maize production under semi-arid condition," Agricultural Water Management, Elsevier, vol. 163(C), pages 90-99.
    18. Afshin Ghahramani & S. Mark Howden & Agustin del Prado & Dean T. Thomas & Andrew D. Moore & Boyu Ji & Serkan Ates, 2019. "Climate Change Impact, Adaptation, and Mitigation in Temperate Grazing Systems: A Review," Sustainability, MDPI, vol. 11(24), pages 1-30, December.
    19. Ding, Risheng & Kang, Shaozhong & Zhang, Yanqun & Hao, Xinmei & Tong, Ling & Du, Taisheng, 2013. "Partitioning evapotranspiration into soil evaporation and transpiration using a modified dual crop coefficient model in irrigated maize field with ground-mulching," Agricultural Water Management, Elsevier, vol. 127(C), pages 85-96.
    20. Straatmann, Zachary & Stevens, Gene & Vories, Earl & Guinan, Pat & Travlos, John & Rhine, Matthew, 2018. "Measuring short-crop reference evapotranspiration in a humid region using electronic atmometers," Agricultural Water Management, Elsevier, vol. 195(C), pages 180-186.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:98:y:2011:i:8:p:1249-1261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.