IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v298y2024ics037837742400218x.html
   My bibliography  Save this article

SWAP 50 years: Advances in modelling soil-water-atmosphere-plant interactions

Author

Listed:
  • Heinen, Marius
  • Mulder, Martin
  • van Dam, Jos
  • Bartholomeus, Ruud
  • de Jong van Lier, Quirijn
  • de Wit, Janine
  • de Wit, Allard
  • Hack - ten Broeke, Mirjam

Abstract

This paper highlights the evolution and impact of the SWAP model (Soil – Water – Atmosphere – Plant), which was initiated by R.A. Feddes and colleagues fifty years ago, in 1974. Since then, the SWAP model has played a crucial role in the advancement of agrohydrology. This paper highlights some major advances that have been made, especially focussing on the last fifteen years. The domain of the SWAP model deals with the simulation of the soil water balance in both unsaturated and saturated conditions. The model solves the Richards equation using the water retention and hydraulic conductivity functions as described by the Van Genuchten – Mualem equations. Bimodal extensions of the Van Genuchten - Mualem relationships have been implemented, as well as modifications near saturation and addressing hysteresis. An important sink term in the Richards equation is root water uptake. Crop development plays an important role in a robust simulation of root water uptake. That is why a link has been made with the dynamic crop growth model WOFOST. Instead of using a prescribed crop development, a distinction between potential and actual crop development is calculated by reducing the potential photosynthesis as a result of water or oxygen stress. Since the early days of SWAP, empirical and macroscopic concepts have been used to simulate root water uptake. Recently two process-based concepts of root water uptake and oxygen stress have also been implemented. Another important sink-source term in the Richards equation is the interaction with artificial drains. In SWAP, drainage can be simulated by either using prescribed or simulated drain heads and simulation of controlled drainage with subirrigation is possible. Finally, we briefly elaborate on three studies using SWAP: water stresses in agriculture in the Netherlands, regional water productivity in China, and controlled drainage with subirrigation. We finish discussing promising developments for the near future.

Suggested Citation

  • Heinen, Marius & Mulder, Martin & van Dam, Jos & Bartholomeus, Ruud & de Jong van Lier, Quirijn & de Wit, Janine & de Wit, Allard & Hack - ten Broeke, Mirjam, 2024. "SWAP 50 years: Advances in modelling soil-water-atmosphere-plant interactions," Agricultural Water Management, Elsevier, vol. 298(C).
  • Handle: RePEc:eee:agiwat:v:298:y:2024:i:c:s037837742400218x
    DOI: 10.1016/j.agwat.2024.108883
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837742400218X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108883?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jarvis, Nicholas & Larsbo, Mats & Lewan, Elisabet & Garré, Sarah, 2022. "Improved descriptions of soil hydrology in crop models: The elephant in the room?," Agricultural Systems, Elsevier, vol. 202(C).
    2. Li, Pei & Ren, Li, 2023. "Evaluating the differences in irrigation methods for winter wheat under limited irrigation quotas in the water-food-economy nexus in the North China Plain," Agricultural Water Management, Elsevier, vol. 289(C).
    3. Scott Jasechko & Zachary D. Sharp & John J. Gibson & S. Jean Birks & Yi Yi & Peter J. Fawcett, 2013. "Terrestrial water fluxes dominated by transpiration," Nature, Nature, vol. 496(7445), pages 347-350, April.
    4. Bonfante, A. & Sellami, M.H. & Abi Saab, M.T. & Albrizio, R. & Basile, A. & Fahed, S. & Giorio, P. & Langella, G. & Monaco, E. & Bouma, J., 2017. "The role of soils in the analysis of potential agricultural production: A case study in Lebanon," Agricultural Systems, Elsevier, vol. 156(C), pages 67-75.
    5. Victor Meriguetti Pinto & Jos C. van Dam & Quirijn de Jong van Lier & Klaus Reichardt, 2019. "Intercropping Simulation Using the SWAP Model: Development of a 2×1D Algorithm," Agriculture, MDPI, vol. 9(6), pages 1-19, June.
    6. de Wit, Allard & Boogaard, Hendrik & Fumagalli, Davide & Janssen, Sander & Knapen, Rob & van Kraalingen, Daniel & Supit, Iwan & van der Wijngaart, Raymond & van Diepen, Kees, 2019. "25 years of the WOFOST cropping systems model," Agricultural Systems, Elsevier, vol. 168(C), pages 154-167.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahboobe Ghobadi & Mahdi Gheysari & Mohammad Shayannejad & Hamze Dokoohaki, 2023. "Analyzing the Effects of Planting Date on the Uncertainty of CERES-Maize and Its Potential to Reduce Yield Gap in Arid and Mediterranean Climates," Agriculture, MDPI, vol. 13(8), pages 1-17, July.
    2. Bonfante, A. & Monaco, E. & Manna, P. & De Mascellis, R. & Basile, A. & Buonanno, M. & Cantilena, G. & Esposito, A. & Tedeschi, A. & De Michele, C. & Belfiore, O. & Catapano, I. & Ludeno, G. & Salinas, 2019. "LCIS DSS—An irrigation supporting system for water use efficiency improvement in precision agriculture: A maize case study," Agricultural Systems, Elsevier, vol. 176(C).
    3. Gilson Augusto Helfer & Jorge Luís Victoria Barbosa & Bruno Guilherme Martini & Ronaldo Bastos dos Santos & Adilson Ben da Costa, 2019. "Ubiquitous Computing in Precision Agriculture: A Systematic Review," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 11(4), December.
    4. Wu, Jie & Feng, Yu & Liang, Lili & He, Xinyue & Zeng, Zhenzhong, 2022. "Assessing evapotranspiration observed from ECOSTRESS using flux measurements in agroecosystems," Agricultural Water Management, Elsevier, vol. 269(C).
    5. Razmavaran, Mohammad Hadi & Sepaskhah, Ali Reza & Ahmadi, Seyed Hamid, 2024. "Water footprint and production of rain-fed saffron under different planting methods with ridge plastic mulch and pre-flowering irrigation in a semi-arid region," Agricultural Water Management, Elsevier, vol. 291(C).
    6. Bohan, David & Schmucki, Reto & Abay, Abrha & Termansen, Mette & Bane, Miranda & Charalabiis, Alice & Cong, Rong-Gang & Derocles, Stephane & Dorner, Zita & Forster, Matthieu & Gibert, Caroline & Harro, 2020. "Designing farmer-acceptable rotations that assure ecosystem service provision inthe face of climate change," MPRA Paper 112313, University Library of Munich, Germany.
    7. J. Ben-Asher & A. Garcia y Garcia & I. Flitcroft & G. Hoogenboom, 2013. "Effect of atmospheric water vapor on photosynthesis, transpiration and canopy conductance: A case study in corn," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 59(12), pages 549-555.
    8. Huang, Zhongdong & Zhang, Xiaoxian & Ashton, Rhys W. & Hawkesford, Malcom J. & Richard Whalley, W., 2023. "Root phenotyping and root water uptake calculation using soil water contents measured in a winter wheat field," Agricultural Water Management, Elsevier, vol. 290(C).
    9. Lucash, Melissa S. & Marshall, Adrienne M. & Weiss, Shelby A. & McNabb, John W. & Nicolsky, Dmitry J. & Flerchinger, Gerald N. & Link, Timothy E. & Vogel, Jason G. & Scheller, Robert M. & Abramoff, Ro, 2023. "Burning trees in frozen soil: Simulating fire, vegetation, soil, and hydrology in the boreal forests of Alaska," Ecological Modelling, Elsevier, vol. 481(C).
    10. Cai, Liping & Wang, Hui & Liu, Yanxu & Fan, Donglin & Li, Xiaoxiao, 2022. "Is potential cultivated land expanding or shrinking in the dryland of China? Spatiotemporal evaluation based on remote sensing and SVM," Land Use Policy, Elsevier, vol. 112(C).
    11. Serra, J. & Paredes, P. & Cordovil, CMdS & Cruz, S. & Hutchings, NJ & Cameira, MR, 2023. "Is irrigation water an overlooked source of nitrogen in agriculture?," Agricultural Water Management, Elsevier, vol. 278(C).
    12. Zhandong Sun & Tom Lotz & Qun Huang, 2021. "An ET-Based Two-Phase Method for the Calibration and Application of Distributed Hydrological Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 1065-1077, February.
    13. Diarra, A. & Jarlan, L. & Er-Raki, S. & Le Page, M. & Aouade, G. & Tavernier, A. & Boulet, G. & Ezzahar, J. & Merlin, O. & Khabba, S., 2017. "Performance of the two-source energy budget (TSEB) model for the monitoring of evapotranspiration over irrigated annual crops in North Africa," Agricultural Water Management, Elsevier, vol. 193(C), pages 71-88.
    14. Jin, Tuofu & Eapen, Alex, 2022. "‘Delayed Forbearance’: Multipoint contact and mutual forbearance in inaugural and subsequent competitive actions," Journal of Business Research, Elsevier, vol. 149(C), pages 938-953.
    15. Mabhaudhi, Tafadzwanashe & Dirwai, Tinashe Lindel & Taguta, Cuthbert & Sikka, Alok & Lautze, Jonathan, 2023. "Mapping Decision Support Tools (DSTs) on agricultural water productivity: A global systematic scoping review," Agricultural Water Management, Elsevier, vol. 290(C).
    16. Brombacher, Joost & Silva, Isadora Rezende de Oliveira & Degen, Jelle & Pelgrum, Henk, 2022. "A novel evapotranspiration based irrigation quantification method using the hydrological similar pixels algorithm," Agricultural Water Management, Elsevier, vol. 267(C).
    17. Shi, Yinfang & Wang, Zhaoyang & Hou, Cheng & Zhang, Puhan, 2022. "Yield estimation of Lycium barbarum L. based on the WOFOST model," Ecological Modelling, Elsevier, vol. 473(C).
    18. Bai, Tiecheng & Zhang, Nannan & Wang, Tao & Wang, Desheng & Yu, Caili & Meng, Wenbo & Fei, Hao & Chen, Rengu & Li, Yanhui & Zhou, Baoping, 2021. "Simulating on the effects of irrigation on jujube tree growth, evapotranspiration and water use based on crop growth model," Agricultural Water Management, Elsevier, vol. 243(C).
    19. Chen, Yuzhang & Chai, Shouxi & Tian, Huihui & Chai, Yuwei & Li, Yawei & Chang, Lei & Cheng, Hongbo, 2019. "Straw strips mulch on furrows improves water use efficiency and yield of potato in a rainfed semiarid area," Agricultural Water Management, Elsevier, vol. 211(C), pages 142-151.
    20. Zhang, Yuliang & Wu, Zhiyong & Singh, Vijay P. & He, Hai & He, Jian & Yin, Hao & Zhang, Yaxin, 2021. "Coupled hydrology-crop growth model incorporating an improved evapotranspiration module," Agricultural Water Management, Elsevier, vol. 246(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:298:y:2024:i:c:s037837742400218x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.