IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v304y2024ics0378377424004281.html
   My bibliography  Save this article

The relationship of δD and δ18O in soil water and its implications for soil evaporation across distinct rainfall years in winter wheat field in the North China Plain

Author

Listed:
  • Hamani, Abdoul Kader Mounkaila
  • Liu, Junming
  • Si, Zhuanyun
  • Kpalari, Djifa Fidele
  • Wang, Guangshuai
  • Gao, Yang
  • Ju, Xiaotang

Abstract

Soil evaporation plays a key role in regulating local climate and water loss. Stable isotope ratios of water (²H/¹H and ¹⁸O/¹⁶O) are effective tracers for studying water flux. This study examines three isotope-based indicators deuterium excess (d-excess), the slope of the soil water evaporation line (SEL), and line-conditioned excess (lc-excess) across three wheat growing seasons: wet, ordinary, and dry years. The influencing factors of d-excess, SEL, and lc-excess, respectively, soil, vegetation, and meteorology, were analyzed using various methods. Wheat yields varied significantly, reaching 6.69 t ha⁻¹ in wet years, 8.66 t ha⁻¹ in dry years, and 9.28 t ha⁻¹ in ordinary years. The lc-excess was highest in ordinary years, and d-excess peaked during dry years. A negative correlation between d-excess and SEL slope, and between lc-excess and SEL slope, was observed in dry and ordinary years (P<0.05), but not in wet years (P>0.05). Multivariate regression showed that net radiation (Rn) was the primary factor influencing SEL, contributing 54.19 %, 11.58 %, and 29.27 % in wet, dry, and ordinary years, respectively. Leaf area index (LAI) was the most significant factor affecting lc-excess (37.91 % in wet years, 32.22 % in dry, and 30.92 % in ordinary years). Vapor pressure deficit (VPD) affected d-excess in wet and ordinary years, while air (Ta) and soil temperature (Ts) were key in dry years. Variation partitioning revealed meteorological factors primarily influenced SEL, lc-excess, and d-excess in wet years, while soil, vegetation, and climate interactions had greater effects in dry and ordinary years. The lc-excess, integrating multiple factors, is a better indicator of soil evaporation than SEL.

Suggested Citation

  • Hamani, Abdoul Kader Mounkaila & Liu, Junming & Si, Zhuanyun & Kpalari, Djifa Fidele & Wang, Guangshuai & Gao, Yang & Ju, Xiaotang, 2024. "The relationship of δD and δ18O in soil water and its implications for soil evaporation across distinct rainfall years in winter wheat field in the North China Plain," Agricultural Water Management, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:agiwat:v:304:y:2024:i:c:s0378377424004281
    DOI: 10.1016/j.agwat.2024.109092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424004281
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:304:y:2024:i:c:s0378377424004281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.