IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v168y2019icp154-167.html
   My bibliography  Save this article

25 years of the WOFOST cropping systems model

Author

Listed:
  • de Wit, Allard
  • Boogaard, Hendrik
  • Fumagalli, Davide
  • Janssen, Sander
  • Knapen, Rob
  • van Kraalingen, Daniel
  • Supit, Iwan
  • van der Wijngaart, Raymond
  • van Diepen, Kees

Abstract

The WOFOST cropping systems model has been applied operationally over the last 25 years as part of the MARS crop yield forecasting system. In this paper we provide an updated description of the model and reflect on the lessons learned over the last 25 years. The latter includes issues like system performance, model sensitivity, spatial model setup, parameterization and calibration approaches as well as software implementation and version management. Particularly for spatial model calibrations we provide experience and guidelines on how to execute calibrations and how to evaluate WOFOST model simulation results, particularly under conditions of limited field data availability.

Suggested Citation

  • de Wit, Allard & Boogaard, Hendrik & Fumagalli, Davide & Janssen, Sander & Knapen, Rob & van Kraalingen, Daniel & Supit, Iwan & van der Wijngaart, Raymond & van Diepen, Kees, 2019. "25 years of the WOFOST cropping systems model," Agricultural Systems, Elsevier, vol. 168(C), pages 154-167.
  • Handle: RePEc:eee:agisys:v:168:y:2019:i:c:p:154-167
    DOI: 10.1016/j.agsy.2018.06.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X17310107
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2018.06.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Djaby, Bakary & Wit, Allard de & Kouadio, Louis & Jarroudi, Moussa El & Tychon, Bernard, 2013. "Spatial Distribution of Calibrated WOFOST Parameters and Their Influence on the Performances of a Regional Yield orecasting System," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 2(4).
    2. Wang, Enli & Engel, Thomas, 1998. "Simulation of phenological development of wheat crops," Agricultural Systems, Elsevier, vol. 58(1), pages 1-24, September.
    3. Bouman, B. A. M. & van Keulen, H. & van Laar, H. H. & Rabbinge, R., 1996. "The `School of de Wit' crop growth simulation models: A pedigree and historical overview," Agricultural Systems, Elsevier, vol. 52(2-3), pages 171-198.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paff, K. & Timlin, D. & Fleisher, D.H., 2023. "A comparison of wheat leaf-appearance rate submodules for DSSAT CROPSIM-CERES (CSCER)," Ecological Modelling, Elsevier, vol. 482(C).
    2. Lescourret, F. & Blecher, N. & Habib, R. & Chadoeuf, J. & Agostini, D. & Pailly, O. & Vaissiere, B. & Poggi, I., 1999. "Development of a simulation model for studying kiwi fruit orchard management," Agricultural Systems, Elsevier, vol. 59(2), pages 215-239, February.
    3. Adam, M. & Wery, J. & Leffelaar, P.A. & Ewert, F. & Corbeels, M. & Van Keulen, H., 2013. "A systematic approach for re-assembly of crop models: An example to simulate pea growth from wheat growth," Ecological Modelling, Elsevier, vol. 250(C), pages 258-268.
    4. Confalonieri, Roberto & Acutis, Marco & Bellocchi, Gianni & Donatelli, Marcello, 2009. "Multi-metric evaluation of the models WARM, CropSyst, and WOFOST for rice," Ecological Modelling, Elsevier, vol. 220(11), pages 1395-1410.
    5. Lu, Yang & Chibarabada, Tendai P. & Ziliani, Matteo G. & Onema, Jean-Marie Kileshye & McCabe, Matthew F. & Sheffield, Justin, 2021. "Assimilation of soil moisture and canopy cover data improves maize simulation using an under-calibrated crop model," Agricultural Water Management, Elsevier, vol. 252(C).
    6. Raes, Dirk & Geerts, Sam & Kipkorir, Emmanuel & Wellens, Joost & Sahli, Ali, 2006. "Simulation of yield decline as a result of water stress with a robust soil water balance model," Agricultural Water Management, Elsevier, vol. 81(3), pages 335-357, March.
    7. Salembier, Chloé & Segrestin, Blanche & Berthet, Elsa & Weil, Benoît & Meynard, Jean-Marc, 2018. "Genealogy of design reasoning in agronomy: Lessons for supporting the design of agricultural systems," Agricultural Systems, Elsevier, vol. 164(C), pages 277-290.
    8. van Ittersum, M. K. & Rabbinge, R. & van Latesteijn, H. C., 1998. "Exploratory land use studies and their role in strategic policy making," Agricultural Systems, Elsevier, vol. 58(3), pages 309-330, November.
    9. Tittonell, P. & van Wijk, M.T. & Herrero, M. & Rufino, M.C. & de Ridder, N. & Giller, K.E., 2009. "Beyond resource constraints - Exploring the biophysical feasibility of options for the intensification of smallholder crop-livestock systems in Vihiga district, Kenya," Agricultural Systems, Elsevier, vol. 101(1-2), pages 1-19, June.
    10. Balkovič, Juraj & van der Velde, Marijn & Schmid, Erwin & Skalský, Rastislav & Khabarov, Nikolay & Obersteiner, Michael & Stürmer, Bernhard & Xiong, Wei, 2013. "Pan-European crop modelling with EPIC: Implementation, up-scaling and regional crop yield validation," Agricultural Systems, Elsevier, vol. 120(C), pages 61-75.
    11. Bouman, B.A.M. & van Laar, H.H., 2006. "Description and evaluation of the rice growth model ORYZA2000 under nitrogen-limited conditions," Agricultural Systems, Elsevier, vol. 87(3), pages 249-273, March.
    12. Belder, P. & Bouman, B. A.M. & Spiertz, J.H.J., 2007. "Exploring options for water savings in lowland rice using a modelling approach," Agricultural Systems, Elsevier, vol. 92(1-3), pages 91-114, January.
    13. Godard, C. & Roger-Estrade, J. & Jayet, P.A. & Brisson, N. & Le Bas, C., 2008. "Use of available information at a European level to construct crop nitrogen response curves for the regions of the EU," Agricultural Systems, Elsevier, vol. 97(1-2), pages 68-82, April.
    14. Vázquez-Montenegro, Ranses José & Durán-Zarabozo, Odil & Baca, Marcio, 2015. "Modelos de impacto en la agricultura teniendo en cuenta los escenarios de la agricultura del cambio climático," Revista Iberoamericana de Bioeconomía y Cambio Climàtico, National Autonomous University of Nicaragua, Leon, vol. 1(1), pages 1-50, July.
    15. Pavlova, Vera N. & Varcheva, Svetlana E. & Bokusheva, Raushan & Calanca, Pierluigi, 2014. "Modelling the effects of climate variability on spring wheat productivity in the steppe zone of Russia and Kazakhstan," Ecological Modelling, Elsevier, vol. 277(C), pages 57-67.
    16. Shrestha, Nirman & Geerts, Sam & Raes, Dirk & Horemans, Stefaan & Soentjens, Sarah & Maupas, Fabienne & Clouet, Philippe, 2010. "Yield response of sugar beets to water stress under Western European conditions," Agricultural Water Management, Elsevier, vol. 97(2), pages 346-350, February.
    17. Thornton, P. K. & Jones, P. G., 1998. "A conceptual approach to dynamic agricultural land-use modelling," Agricultural Systems, Elsevier, vol. 57(4), pages 505-521, August.
    18. Li, Xiaofei & Coble, Keith H. & Tack, Jesse B. & Barnett, Barry J., 2016. "Estimating Site-Specific Crop Yield Response using Varying Coefficient Models," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235798, Agricultural and Applied Economics Association.
    19. Samarasinghe, G. B., 2003. "Growth and yields of Sri Lanka's major crops interpreted from public domain satellites," Agricultural Water Management, Elsevier, vol. 58(2), pages 145-157, February.
    20. Bouman, B. A. M. & Nieuwenhuyse, A., 1999. "Exploring options for sustainable beef cattle ranching in the humid tropics: a case study for the Atlantic Zone of Costa Rica," Agricultural Systems, Elsevier, vol. 59(2), pages 145-161, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:168:y:2019:i:c:p:154-167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.