IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v35y2021i3d10.1007_s11269-021-02774-x.html
   My bibliography  Save this article

An ET-Based Two-Phase Method for the Calibration and Application of Distributed Hydrological Models

Author

Listed:
  • Zhandong Sun

    (State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences)

  • Tom Lotz

    (State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences
    Jinling Institute of Technology)

  • Qun Huang

    (State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences)

Abstract

Parameter calibration is a core process for the application of distributed hydrological models, which depends strongly on river runoff records. However, the sparse distribution of hydrological gauging stations has largely limited the application of hydrological modeling. Remote sensing evapotranspiration (ET) data open a new avenue for the calibration of hydrological models. In this study, we used MOD16 ET, a data product from the moderate-resolution imaging spectroradiometer (MODIS), to calibrate a hydrological model in a two-phased approach. A simulated runoff time series was created with the Soil and Water Assessment Tool (SWAT) model that was automatically calibrated for ET in the first phase. The simulated runoff time series was then used in the second phase as the “observed” variable for a semiautomatic calibration in which runoff composition was further refined based on a comprehensive understanding of the local hydrological cycle. The results indicate that the output of simulated ET to MOD16 ET was acceptable and produced a reasonable runoff time series compared to the actual observed runoff, yet the composition of runoff was unsatisfactory for the different runoff components (e.g., surface runoff and base flow) after only automatic calibration. The runoff components were improved by semimanual calibration of the runoff sensitive parameters and resulted in a well calibrated distributed hydrological model. The increasing availability and improving quality of global ET datasets provide an alternative way to calibrate hydrological models, especially in ungauged meso- and large-scale basins. Even though the runoff gauging series is not a prerequisite for the method, some in situ observations are still valuable for the optimization of water cycle components.

Suggested Citation

  • Zhandong Sun & Tom Lotz & Qun Huang, 2021. "An ET-Based Two-Phase Method for the Calibration and Application of Distributed Hydrological Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 1065-1077, February.
  • Handle: RePEc:spr:waterr:v:35:y:2021:i:3:d:10.1007_s11269-021-02774-x
    DOI: 10.1007/s11269-021-02774-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-021-02774-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-021-02774-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scott Jasechko & Zachary D. Sharp & John J. Gibson & S. Jean Birks & Yi Yi & Peter J. Fawcett, 2013. "Terrestrial water fluxes dominated by transpiration," Nature, Nature, vol. 496(7445), pages 347-350, April.
    2. Gassman, Philip W. & Reyes, Manuel R. & Green, Colleen H. & Arnold, Jeffrey G., 2007. "The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions," ISU General Staff Papers 200701010800001027, Iowa State University, Department of Economics.
    3. Wen-chuan Wang & Kwok-wing Chau & Dong-mei Xu & Xiao-Yun Chen, 2015. "Improving Forecasting Accuracy of Annual Runoff Time Series Using ARIMA Based on EEMD Decomposition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2655-2675, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Uttam Ghimire & Taimoor Akhtar & Narayan Kumar Shrestha & Pranesh Kumar Paul & Christoph Schürz & Raghavan Srinivasan & Prasad Daggupati, 2022. "A Long-term Global Comparison of IMERG and CFSR with Surface Precipitation Stations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5695-5709, November.
    2. Sakine Koohi & Asghar Azizian & Luca Brocca, 2022. "Calibration of a Distributed Hydrological Model (VIC-3L) Based on Global Water Resources Reanalysis Datasets," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1287-1306, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Egbendewe-Mondzozo, Aklesso & Swinton, Scott M. & Bals, Bryan D. & Dale, Bruce E., 2011. "Can Dispersed Biomass Processing Protect the Environment and Cover the Bottom Line for Biofuel?," Staff Paper Series 119348, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    2. Andersson, Jafet C.M. & Zehnder, Alexander J.B. & Rockström, Johan & Yang, Hong, 2011. "Potential impacts of water harvesting and ecological sanitation on crop yield, evaporation and river flow regimes in the Thukela River basin, South Africa," Agricultural Water Management, Elsevier, vol. 98(7), pages 1113-1124, May.
    3. Hongxing Liu & Wendong Zhang & Elena Irwin & Jeffrey Kast & Noel Aloysius & Jay Martin & Margaret Kalcic, 2020. "Best Management Practices and Nutrient Reduction: An Integrated Economic-Hydrologic Model of the Western Lake Erie Basin," Land Economics, University of Wisconsin Press, vol. 96(4), pages 510-530.
    4. Alan F. Hamlet & Nima Ehsani & Jennifer L. Tank & Zachariah Silver & Kyuhyun Byun & Ursula H. Mahl & Shannon L. Speir & Matt T. Trentman & Todd V. Royer, 2024. "Effects of climate and winter cover crops on nutrient loss in agricultural watersheds in the midwestern U.S," Climatic Change, Springer, vol. 177(1), pages 1-21, January.
    5. Yates, Andrew J. & Doyle, Martin W. & Rigby, J.R. & Schnier, Kurt E., 2013. "Market power, private information, and the optimal scale of pollution permit markets with application to North Carolina's Neuse River," Resource and Energy Economics, Elsevier, vol. 35(3), pages 256-276.
    6. Eini, Mohammad Reza & Salmani, Haniyeh & Piniewski, Mikołaj, 2023. "Comparison of process-based and statistical approaches for simulation and projections of rainfed crop yields," Agricultural Water Management, Elsevier, vol. 277(C).
    7. Jeong, Hanseok & Kim, Hakkwan & Jang, Taeil & Park, Seungwoo, 2016. "Assessing the effects of indirect wastewater reuse on paddy irrigation in the Osan River watershed in Korea using the SWAT model," Agricultural Water Management, Elsevier, vol. 163(C), pages 393-402.
    8. Lingcheng Li & Liping Zhang & Jun Xia & Christopher Gippel & Renchao Wang & Sidong Zeng, 2015. "Implications of Modelled Climate and Land Cover Changes on Runoff in the Middle Route of the South to North Water Transfer Project in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2563-2579, June.
    9. Mohammad Zounemat-Kermani, 2016. "Investigating Chaos and Nonlinear Forecasting in Short Term and Mid-term River Discharge," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1851-1865, March.
    10. Quande Qin & Huangda He & Li Li & Ling-Yun He, 2020. "A Novel Decomposition-Ensemble Based Carbon Price Forecasting Model Integrated with Local Polynomial Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1249-1273, April.
    11. Wu, Jie & Feng, Yu & Liang, Lili & He, Xinyue & Zeng, Zhenzhong, 2022. "Assessing evapotranspiration observed from ECOSTRESS using flux measurements in agroecosystems," Agricultural Water Management, Elsevier, vol. 269(C).
    12. Roy Brouwer & Rute Pinto & Jorge Garcia‐Hernandez & Xingtong Li & Merrin Macrae & Predrag Rajsic & Wanhong Yang & Yongbo Liu & Mark Anderson & Louise Heyming, 2023. "Spatial optimization of nutrient reduction measures on agricultural land to improve water quality: A coupled modeling approach," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 71(3-4), pages 329-353, September.
    13. Vidhi Vig & Anmol Kaur, 2022. "Time series forecasting and mathematical modeling of COVID-19 pandemic in India: a developing country struggling to cope up," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 2920-2933, December.
    14. Ramesh P. Rudra & Balew A. Mekonnen & Rituraj Shukla & Narayan Kumar Shrestha & Pradeep K. Goel & Prasad Daggupati & Asim Biswas, 2020. "Currents Status, Challenges, and Future Directions in Identifying Critical Source Areas for Non-Point Source Pollution in Canadian Conditions," Agriculture, MDPI, vol. 10(10), pages 1-25, October.
    15. Baoying Shan & Ping Guo & Shanshan Guo & Zhong Li, 2019. "A Price-Forecast-Based Irrigation Scheduling Optimization Model under the Response of Fruit Quality and Price to Water," Sustainability, MDPI, vol. 11(7), pages 1-21, April.
    16. Javier Senent-Aparicio & Sitian Liu & Julio Pérez-Sánchez & Adrián López-Ballesteros & Patricia Jimeno-Sáez, 2018. "Assessing Impacts of Climate Variability and Reforestation Activities on Water Resources in the Headwaters of the Segura River Basin (SE Spain)," Sustainability, MDPI, vol. 10(9), pages 1-13, September.
    17. Elias Bekele & H. Knapp, 2010. "Watershed Modeling to Assessing Impacts of Potential Climate Change on Water Supply Availability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3299-3320, October.
    18. Gao, Jie & Xie, Pengxuan & Zhuo, La & Shang, Kehui & Ji, Xiangxiang & Wu, Pute, 2021. "Water footprints of irrigated crop production and meteorological driving factors at multiple temporal scales," Agricultural Water Management, Elsevier, vol. 255(C).
    19. N. Maier & J. Dietrich, 2016. "Using SWAT for Strategic Planning of Basin Scale Irrigation Control Policies: a Case Study from a Humid Region in Northern Germany," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3285-3298, July.
    20. Ribaudo, Marc & Savage, Jeffrey, 2014. "Controlling non-additional credits from nutrient management in water quality trading programs through eligibility baseline stringency," Ecological Economics, Elsevier, vol. 105(C), pages 233-239.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:35:y:2021:i:3:d:10.1007_s11269-021-02774-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.