IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v202y2022ics0308521x22001135.html
   My bibliography  Save this article

Improved descriptions of soil hydrology in crop models: The elephant in the room?

Author

Listed:
  • Jarvis, Nicholas
  • Larsbo, Mats
  • Lewan, Elisabet
  • Garré, Sarah

Abstract

Soil-crop simulation models are widely used to assess the impacts of soil management and climate change on soil water balance, solute transport and crop production. In this context, it is important that hydrological processes in the soil-crop system are accurately modelled. We suggest here that empirical treatments of soil water flow, water uptake by plant roots and transpiration limit the applicability of crop models and increase prediction errors. We further argue that this empiricism is to a large extent unnecessary, as parsimonious physics-based descriptions of these water flow processes in the soil-crop system are now available. Recent reviews and opinion articles, whilst strongly advocating the need for improvements to crop models, fail to mention the significant role played by accurate treatments of soil hydrology. It seems to us that empirical models of soil water flow have become the elephant in the room.

Suggested Citation

  • Jarvis, Nicholas & Larsbo, Mats & Lewan, Elisabet & Garré, Sarah, 2022. "Improved descriptions of soil hydrology in crop models: The elephant in the room?," Agricultural Systems, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:agisys:v:202:y:2022:i:c:s0308521x22001135
    DOI: 10.1016/j.agsy.2022.103477
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X22001135
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2022.103477?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Keating, Brian A., 2020. "Crop, soil and farm systems models – science, engineering or snake oil revisited," Agricultural Systems, Elsevier, vol. 184(C).
    2. Simone Fatichi & Dani Or & Robert Walko & Harry Vereecken & Michael H. Young & Teamrat A. Ghezzehei & Tomislav Hengl & Stefan Kollet & Nurit Agam & Roni Avissar, 2020. "Soil structure is an important omission in Earth System Models," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    3. Sonkar, Ickkshaanshu & Kotnoor, Hari Prasad & Sen, Sumit, 2019. "Estimation of root water uptake and soil hydraulic parameters from root zone soil moisture and deep percolation," Agricultural Water Management, Elsevier, vol. 222(C), pages 38-47.
    4. Deepak K. Ray & James S. Gerber & Graham K. MacDonald & Paul C. West, 2015. "Climate variation explains a third of global crop yield variability," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
    5. Maraux, F. & Lafolie, F. & Bruckler, L., 1998. "Comparison between mechanistic and functional models for estimating soil water balance: deterministic and stochastic approaches," Agricultural Water Management, Elsevier, vol. 38(1), pages 1-20, October.
    6. Vanclooster, M. & Boesten, J. J. T. I., 2000. "Application of pesticide simulation models to the Vredepeel dataset: I. Water, solute and heat transport," Agricultural Water Management, Elsevier, vol. 44(1-3), pages 105-117, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heinen, Marius & Mulder, Martin & van Dam, Jos & Bartholomeus, Ruud & de Jong van Lier, Quirijn & de Wit, Janine & de Wit, Allard & Hack - ten Broeke, Mirjam, 2024. "SWAP 50 years: Advances in modelling soil-water-atmosphere-plant interactions," Agricultural Water Management, Elsevier, vol. 298(C).
    2. Malmquist, Louise & Barron, Jennie, 2023. "Improving spatial resolution in soil and drainage data to combine natural and anthropogenic water functions at catchment scale in agricultural landscapes," Agricultural Water Management, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Juan & Zhang, Zhao & Tao, Fulu & Chen, Yi & Luo, Xiangzhong & Xie, Jun, 2023. "Forecasting global crop yields based on El Nino Southern Oscillation early signals," Agricultural Systems, Elsevier, vol. 205(C).
    2. Jeetendra Prakash Aryal & Tek B. Sapkota & Ritika Khurana & Arun Khatri-Chhetri & Dil Bahadur Rahut & M. L. Jat, 2020. "Climate change and agriculture in South Asia: adaptation options in smallholder production systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5045-5075, August.
    3. Rosa Carbonell-Bojollo & Oscar Veroz-Gonzalez & Rafaela Ordoñez-Fernandez & Manuel Moreno-Garcia & Gottlieb Basch & Amir Kassam & Miguel A. Repullo-Ruiberriz de Torres & Emilio J. Gonzalez-Sanchez, 2019. "The Effect of Conservation Agriculture and Environmental Factors on CO 2 Emissions in a Rainfed Crop Rotation," Sustainability, MDPI, vol. 11(14), pages 1-19, July.
    4. Zhao, Xin & Calvin, Katherine & Patel, Pralit & Abigail, Snyder & Wise, Marshall & Waldhoff, Stephanie & Hejazi, Mohamad & Edmonds, James, 2021. "Impacts of interannual climate and biophysical variability on global agriculture markets," Conference papers 333245, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    5. Luca Piciullo & Vittoria Capobianco & Håkon Heyerdahl, 2022. "A first step towards a IoT-based local early warning system for an unsaturated slope in Norway," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3377-3407, December.
    6. Qiang Wang & Yuanfan Li & Rongrong Li, 2024. "Rethinking the environmental Kuznets curve hypothesis across 214 countries: the impacts of 12 economic, institutional, technological, resource, and social factors," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-19, December.
    7. Linnenluecke, Martina K. & Smith, Tom & McKnight, Brent, 2016. "Environmental finance: A research agenda for interdisciplinary finance research," Economic Modelling, Elsevier, vol. 59(C), pages 124-130.
    8. Janusz Prusiński & Radosław Nowicki, 2020. "Effect of planting density and row spacing on the yielding of soybean (Glycine max L. Merrill)," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 66(12), pages 616-623.
    9. Shahzad, Muhammad Faisal & Abdulai, Awudu, 2020. "Adaptation to extreme weather conditions and farm performance in rural Pakistan," Agricultural Systems, Elsevier, vol. 180(C).
    10. Coronese, Matteo & Occelli, Martina & Lamperti, Francesco & Roventini, Andrea, 2023. "AgriLOVE: Agriculture, land-use and technical change in an evolutionary, agent-based model," Ecological Economics, Elsevier, vol. 208(C).
    11. Kamini Yadav & Hatim M. E. Geli, 2021. "Prediction of Crop Yield for New Mexico Based on Climate and Remote Sensing Data for the 1920–2019 Period," Land, MDPI, vol. 10(12), pages 1-27, December.
    12. Kukal, M.S. & Irmak, S., 2020. "Impact of irrigation on interannual variability in United States agricultural productivity," Agricultural Water Management, Elsevier, vol. 234(C).
    13. Ibrahim Sufiyan & J.I. Magaji & A.T.Ogah & K.D. Mohammed & K.K Geidam, 2020. "Effect Of Climatic Variables On Agricultural Productivity And Distribution In Plateau State Nigeria," Environment & Ecosystem Science (EES), Zibeline International Publishing, vol. 4(1), pages 5-9, February.
    14. Wang, Teng & Yi, Fujin & Liu, Huilin & Wu, Ximing & Zhong, Funing, 2021. "Can Agricultural Mechanization Have a Mitigation Effect on China's Yield Variability?," 2021 Conference, August 17-31, 2021, Virtual 315098, International Association of Agricultural Economists.
    15. Seijger, Chris & Chukalla, Abebe & Bremer, Karin & Borghuis, Gerlo & Christoforidou, Maria & Mul, Marloes & Hellegers, Petra & van Halsema, Gerardo, 2023. "Agronomic analysis of WaPOR applications: Confirming conservative biomass water productivity in inherent and climatological variance of WaPOR data outputs," Agricultural Systems, Elsevier, vol. 211(C).
    16. Robert Becker Pickson & Ge He & Elliot Boateng, 2022. "Impacts of climate change on rice production: evidence from 30 Chinese provinces," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3907-3925, March.
    17. Sari J Himanen & Hanna Mäkinen & Karoliina Rimhanen & Riitta Savikko, 2016. "Engaging Farmers in Climate Change Adaptation Planning: Assessing Intercropping as a Means to Support Farm Adaptive Capacity," Agriculture, MDPI, vol. 6(3), pages 1-13, July.
    18. Tshering Choden & Bhim Bahadur Ghaley, 2021. "A Portfolio of Effective Water and Soil Conservation Practices for Arable Production Systems in Europe and North Africa," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    19. Da-Rocha, Jose-Maria & García-Cutrin, Javier & Gutierrez, Maria Jose & Touze, Julia, 2016. "A note on CES Preferences in Age-Structured Models," MPRA Paper 75298, University Library of Munich, Germany.
    20. Bucheli, Janic & Visse, Margot & Herrera, Juan & Häner, Lilia Levy & Tack, Jesse & Finger, Robert, 2022. "Precipitation causes quality losses of economic relevance in wheat production," 96th Annual Conference, April 4-6, 2022, K U Leuven, Belgium 321208, Agricultural Economics Society - AES.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:202:y:2022:i:c:s0308521x22001135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.