IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v278y2023ics0378377423000021.html
   My bibliography  Save this article

Effect of drip irrigation on seed yield, seed quality and water use efficiency of Hedysarum fruticosum in the arid region of Northwest China

Author

Listed:
  • Bai, Mengjie
  • Tao, Qibo
  • Zhang, Zuxin
  • Lang, Shuqing
  • Li, Junhui
  • Chen, Dali
  • Wang, Yanrong
  • Hu, Xiaowen

Abstract

Shortage of high-quality seeds of native species, particularly for xerophyte shrubs, have severely limited grassland restoration in the arid region of China. However, little attention has been devoted to improving seed yield and quality in the xerophyte shrub. We conducted a three-year field experiment from 2019 to 2020 to investigate the effects of four irrigation treatments (i.e., W0: non-irrigated control; W1: irrigation at winter; W2: irrigation at winter and regreening; W3: irrigation at winter, regreening, and peak flowering) via subsurface drip irrigation on the seed yield and quality of Hedysarum fruticosum, a dominant leguminous shrub in the desert areas of China. The results showed that seed yield increased as irrigation frequency increased regardless of growth season. The yearly average seed yields were 98.0, 107.7, 179.3, and 265.5 kg hm−2 for W0, W1, W2, and W3 irrigation, respectively. Seed yield decreased in each subsequent growth year in all irrigation treatments, and the variation in seed yield each year was the highest in W0 and lowest in W3 irrigation. Compared to 2019, the seed yield of W0 decreased by 47 % and 66 %, but yields of the W3 irrigation treatment decreased by 8 % and 19 % in 2020 and 2021, respectively. Meanwhile, irrigation significantly affected seed yield components; the number of florets and pods per stem under the W3 irrigation treatment was two to three times that of W0 irrigation for three years. The structural equation model revealed that pods per stem had the largest direct positive effect on seed yield (path factor p = 0.44), followed by seeds per pod (path factor p = 0.36). Irrigation treatments affected seed germination percentage and seed size, which increased as irrigations times increased. A similar water use efficiency was achieved in W0 and W3 in three years, and W1 treatment had the lowest water use efficiency. In conclusion, we recommend W3 treatment to increase seed yield and quality, especially in arid regions. Future breeding objectives and agronomic practice for H.fruticosum should pay more attention to increasing pods per stem. Our study can be used as a reference for taking appropriate agronomic measures to improve the seed yield of H.fruticosum and similar shrubs.

Suggested Citation

  • Bai, Mengjie & Tao, Qibo & Zhang, Zuxin & Lang, Shuqing & Li, Junhui & Chen, Dali & Wang, Yanrong & Hu, Xiaowen, 2023. "Effect of drip irrigation on seed yield, seed quality and water use efficiency of Hedysarum fruticosum in the arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 278(C).
  • Handle: RePEc:eee:agiwat:v:278:y:2023:i:c:s0378377423000021
    DOI: 10.1016/j.agwat.2023.108137
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423000021
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108137?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Ruoshui & Kang, Yaohu & Wan, Shuqin & Hu, Wei & Liu, Shiping & Liu, Shuhui, 2011. "Salt distribution and the growth of cotton under different drip irrigation regimes in a saline area," Agricultural Water Management, Elsevier, vol. 100(1), pages 58-69.
    2. Deng, Xi-Ping & Shan, Lun & Zhang, Heping & Turner, Neil C., 2006. "Improving agricultural water use efficiency in arid and semiarid areas of China," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 23-40, February.
    3. Hussain, Mubshar & Farooq, Shahid & Hasan, Waseem & Ul-Allah, Sami & Tanveer, Mohsin & Farooq, Muhammad & Nawaz, Ahmad, 2018. "Drought stress in sunflower: Physiological effects and its management through breeding and agronomic alternatives," Agricultural Water Management, Elsevier, vol. 201(C), pages 152-166.
    4. Cucci, Giovanna & Lacolla, Giovanni & Boari, Francesca & Mastro, Mario Alberto & Cantore, Vito, 2019. "Effect of water salinity and irrigation regime on maize (Zea mays L.) cultivated on clay loam soil and irrigated by furrow in Southern Italy," Agricultural Water Management, Elsevier, vol. 222(C), pages 118-124.
    5. Wang, Xiangping & Yang, Jingsong & Liu, Guangming & Yao, Rongjiang & Yu, Shipeng, 2015. "Impact of irrigation volume and water salinity on winter wheat productivity and soil salinity distribution," Agricultural Water Management, Elsevier, vol. 149(C), pages 44-54.
    6. Wang, Jiangtao & Du, Gangfeng & Tian, Jingshan & Zhang, Yali & Jiang, Chuangdao & Zhang, Wangfeng, 2020. "Effect of irrigation methods on root growth, root-shoot ratio and yield components of cotton by regulating the growth redundancy of root and shoot," Agricultural Water Management, Elsevier, vol. 234(C).
    7. Skaggs, R. K., 2001. "Predicting drip irrigation use and adoption in a desert region," Agricultural Water Management, Elsevier, vol. 51(2), pages 125-142, October.
    8. Ali, Shahzad & Jan, Amanullah & Manzoor, & Sohail, Amir & Khan, Ahmad & Khan, Muhammad Ijaz & Inamullah, & Zhang, Jiahua & Daur, Ihsanullah, 2018. "Soil amendments strategies to improve water-use efficiency and productivity of maize under different irrigation conditions," Agricultural Water Management, Elsevier, vol. 210(C), pages 88-95.
    9. Batchelor, Charles & Lovell, Christopher & Murata, Monica, 1996. "Simple microirrigation techniques for improving irrigation efficiency on vegetable gardens," Agricultural Water Management, Elsevier, vol. 32(1), pages 37-48, November.
    10. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jia, Zhicheng & Ou, Chengming & Sun, Shoujiang & Sun, Ming & Zhao, Yihong & Li, Changran & Zhao, Shiqiang & Wang, Juan & Jia, Shangang & Mao, Peisheng, 2024. "Optimizing drip irrigation managements to improve alfalfa seed yield in semiarid region," Agricultural Water Management, Elsevier, vol. 297(C).
    2. Zhao, Xiaole & Mak-Mensah, Erastus & Zhao, Wucheng & Wang, Qi & Zhou, Xujiao & Zhang, Dengkui & Zhu, Jinhui & Qi, Wenjia & Liu, Qinglin & Li, Xiaoling & Li, Xuchun & Liu, Bing, 2024. "Optimized ridge-furrow technology with biochar amendment for alfalfa yield enhancement and soil erosion reduction based on a structural equation model on sloping land," Agricultural Water Management, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Komlan Koudahe & Aleksey Y. Sheshukov & Jonathan Aguilar & Koffi Djaman, 2021. "Irrigation-Water Management and Productivity of Cotton: A Review," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    2. Yang, Danni & Li, Sien & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Mao, Xiaomin & Tong, Ling & Hao, Xinmei & Ding, Risheng & Niu, Jun, 2020. "Effect of drip irrigation on wheat evapotranspiration, soil evaporation and transpiration in Northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
    3. Liang, Jiaping & Shi, Wenjuan & He, Zijian & Pang, Linna & Zhang, Yanchao, 2019. "Effects of poly-γ-glutamic acid on water use efficiency, cotton yield, and fiber quality in the sandy soil of southern Xinjiang, China," Agricultural Water Management, Elsevier, vol. 218(C), pages 48-59.
    4. Wang, Feng & Xiao, Junfu & Ming, Bo & Xie, Ruizhi & Wang, Keru & Hou, Peng & Liu, Guangzhou & Zhang, Guoqiang & Chen, Jianglu & Liu, Wanmao & Yang, Yunshan & Qin, Anzhen & Li, Shaokun, 2021. "Grain yields and evapotranspiration dynamics of drip-irrigated maize under high plant density across arid to semi-humid climates," Agricultural Water Management, Elsevier, vol. 247(C).
    5. Jia, Zhicheng & Ou, Chengming & Sun, Shoujiang & Sun, Ming & Zhao, Yihong & Li, Changran & Zhao, Shiqiang & Wang, Juan & Jia, Shangang & Mao, Peisheng, 2024. "Optimizing drip irrigation managements to improve alfalfa seed yield in semiarid region," Agricultural Water Management, Elsevier, vol. 297(C).
    6. Liu, Yi & Zeng, Wenzhi & Ao, Chang & Lei, Guoqing & Wu, Jingwei & Huang, Jiesheng & Gaiser, Thomas & Srivastava, Amit Kumar, 2022. "Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth," Agricultural Water Management, Elsevier, vol. 270(C).
    7. Guangming Yang & Guofang Gong & Qingqing Gui, 2022. "Exploring the Spatial Network Structure of Agricultural Water Use Efficiency in China: A Social Network Perspective," Sustainability, MDPI, vol. 14(5), pages 1-22, February.
    8. Zhou, Beibei & Liang, Chaofan & Chen, Xiaopeng & Ye, Sitan & Peng, Yao & Yang, Lu & Duan, Manli & Wang, Xingpeng, 2022. "Magnetically-treated brackish water affects soil water-salt distribution and the growth of cotton with film mulch drip irrigation in Xinjiang, China," Agricultural Water Management, Elsevier, vol. 263(C).
    9. Wang, Chunyu & Li, Sien & Wu, Mousong & Zhang, Wenxin & Guo, Zhenyu & Huang, Siyu & Yang, Danni, 2023. "Co-regulation of temperature and moisture in the irrigated agricultural ecosystem productivity," Agricultural Water Management, Elsevier, vol. 275(C).
    10. Chen, Yang & Wang, Lu & Tong, Ling & Hao, Xinmei & Wu, Xuanyi & Ding, Risheng & Kang, Shaozhong & Li, Sien, 2023. "Effects of biochar addition and deficit irrigation with brackish water on yield-scaled N2O emissions under drip irrigation with mulching," Agricultural Water Management, Elsevier, vol. 277(C).
    11. Guoqiang Zhang & Bo Ming & Dongping Shen & Ruizhi Xie & Peng Hou & Jun Xue & Keru Wang & Shaokun Li, 2021. "Optimizing Grain Yield and Water Use Efficiency Based on the Relationship between Leaf Area Index and Evapotranspiration," Agriculture, MDPI, vol. 11(4), pages 1-14, April.
    12. Firouzabadi, Ali Ghadami & Baghani, Javad & Jovzi, Mehdi & Albaji, Mohammad, 2021. "Effects of wheat row spacing layout and drip tape spacing on yield and water productivity in sandy clay loam soil in a semi-arid region," Agricultural Water Management, Elsevier, vol. 251(C).
    13. Cucci, Giovanna & Lacolla, Giovanni & Boari, Francesca & Mastro, Mario Alberto & Cantore, Vito, 2019. "Effect of water salinity and irrigation regime on maize (Zea mays L.) cultivated on clay loam soil and irrigated by furrow in Southern Italy," Agricultural Water Management, Elsevier, vol. 222(C), pages 118-124.
    14. Che, Zheng & Wang, Jun & Li, Jiusheng, 2021. "Effects of water quality, irrigation amount and nitrogen applied on soil salinity and cotton production under mulched drip irrigation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 247(C).
    15. Zhang, Tibin & Dong, Qin’ge & Zhan, Xiaoyun & He, Jianqiang & Feng, Hao, 2019. "Moving salts in an impermeable saline-sodic soil with drip irrigation to permit wolfberry production," Agricultural Water Management, Elsevier, vol. 213(C), pages 636-645.
    16. Zhang, Fuqiang & He, Chao & Yaqiong, Fan & Hao, Xinmei & Kang, Shaozhong, 2022. "Canal delivery and irrigation scheduling optimization based on crop water demand," Agricultural Water Management, Elsevier, vol. 260(C).
    17. Guixin Zhang & Shibo Zhang & Zhenqing Xia & Mengke Wu & Jingxuan Bai & Haidong Lu, 2023. "Effects of Biodegradable Film and Polyethylene Film Residues on Soil Moisture and Maize Productivity in Dryland," Agriculture, MDPI, vol. 13(2), pages 1-17, January.
    18. Wang, He & Zheng, Chunlian & Ning, Songrui & Cao, Caiyun & Li, Kejiang & Dang, Hongkai & Wu, Yuqing & Zhang, Junpeng, 2023. "Impacts of long-term saline water irrigation on soil properties and crop yields under maize-wheat crop rotation," Agricultural Water Management, Elsevier, vol. 286(C).
    19. He, Rui & He, Min & Xu, Haidong & Zhang, Kun & Zhang, Mingcai & Ren, Dan & Li, Zhaohu & Zhou, Yuyi & Duan, Liusheng, 2023. "A novel plant growth regulator brazide improved maize water productivity in the arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 287(C).
    20. Liu, Yi & Hu, Yue & Wei, Chenchen & Zeng, Wenzhi & Huang, Jiesheng & Ao, Chang, 2024. "Synergistic regulation of irrigation and drainage based on crop salt tolerance and leaching threshold," Agricultural Water Management, Elsevier, vol. 292(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:278:y:2023:i:c:s0378377423000021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.