IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v274y2022ics0378377422004991.html
   My bibliography  Save this article

The applicability of water-permeable plastic film and biodegradable film as alternatives to polyethylene film in crops on the Loess Plateau

Author

Listed:
  • Yang, Wenjia
  • Yan, Naitong
  • Zhang, Jiali
  • Yan, Jiakun
  • Ma, Dengke
  • Wang, Shiwen
  • Yin, Lina

Abstract

Polyethylene film (PEF) cannot retain “ineffective precipitation” (< 10 mm) in drylands, and PEF residues in farmland have detrimental impacts on soil health. Thus, water-permeable plastic film (WPF) that can retain ineffective precipitation and biodegradable film (BF) that can be degraded were developed. However, the yield performance using WPF and BF varied a lot in different crops and experimental sites as compared with PEF. Here, we evaluated the applicability of WPF and BF as alternatives to PEF on millet, sorghum and corn with different growth periods on the northern Loess Plateau of China. Our results showed that, compared with PEF, ineffective precipitation was successfully preserved and soil water storage was 13–19 mm higher under WPF. Furthermore, the activities of urease, alkaline phosphatase, catalase, and contents of soil NO3––N, available phosphorus were also higher under WPF, due to the improved soil water conditions and mitigated soil temperature. Consequently, the yields of the three crops were 5–18% higher under WPF. The yield under BF did not decrease in millet, while it was 8–15% lower in sorghum and corn than that under PEF. When a large area of BF cracks appeared, sorghum and corn were in the middle growth period with a low leaf area index (LAI), and the rainy season did not come yet; but for millet, it coincided with the rainy season in its late growth period with a high LAI. Therefore, compared with PEF, soil water storage was 9–30 mm lower under BF in sorghum and corn during the middle growth stage, which resulted in lower soil enzyme activities and nutrient contents. In conclusion, as an alternative to PEF, WPF application is favorable in areas with high ineffective precipitation, and BF application is not suitable for crops with long growth period and low LAI.

Suggested Citation

  • Yang, Wenjia & Yan, Naitong & Zhang, Jiali & Yan, Jiakun & Ma, Dengke & Wang, Shiwen & Yin, Lina, 2022. "The applicability of water-permeable plastic film and biodegradable film as alternatives to polyethylene film in crops on the Loess Plateau," Agricultural Water Management, Elsevier, vol. 274(C).
  • Handle: RePEc:eee:agiwat:v:274:y:2022:i:c:s0378377422004991
    DOI: 10.1016/j.agwat.2022.107952
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422004991
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107952?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daryanto, Stefani & Wang, Lixin & Jacinthe, Pierre-André, 2017. "Can ridge-furrow plastic mulching replace irrigation in dryland wheat and maize cropping systems?," Agricultural Water Management, Elsevier, vol. 190(C), pages 1-5.
    2. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    3. Zhenling Cui & Hongyan Zhang & Xinping Chen & Chaochun Zhang & Wenqi Ma & Chengdong Huang & Weifeng Zhang & Guohua Mi & Yuxin Miao & Xiaolin Li & Qiang Gao & Jianchang Yang & Zhaohui Wang & Youliang Y, 2018. "Pursuing sustainable productivity with millions of smallholder farmers," Nature, Nature, vol. 555(7696), pages 363-366, March.
    4. Unkovich, Murray & Baldock, Jeff & Farquharson, Ryan, 2018. "Field measurements of bare soil evaporation and crop transpiration, and transpiration efficiency, for rainfed grain crops in Australia – A review," Agricultural Water Management, Elsevier, vol. 205(C), pages 72-80.
    5. Tiwari, K. N. & Singh, Ajai & Mal, P. K., 2003. "Effect of drip irrigation on yield of cabbage (Brassica oleracea L. var. capitata) under mulch and non-mulch conditions," Agricultural Water Management, Elsevier, vol. 58(1), pages 19-28, January.
    6. Peng, Zhengkai & Wang, Linlin & Xie, Junhong & Li, Lingling & Coulter, Jeffrey A. & Zhang, Renzhi & Luo, Zhuzhu & Cai, Liqun & Carberry, Peter & Whitbread, Anthony, 2020. "Conservation tillage increases yield and precipitation use efficiency of wheat on the semi-arid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 231(C).
    7. Wang, Jingwei & Niu, Wenquan & Guo, Lili & Liu, Lu & Li, Yuan & Dyck, Miles, 2018. "Drip irrigation with film mulch improves soil alkaline phosphatase and phosphorus uptake," Agricultural Water Management, Elsevier, vol. 201(C), pages 258-267.
    8. Chen, Suyin & Zhang, Xiying & Sun, Hongyong & Ren, Tusheng & Wang, Yanmei, 2010. "Effects of winter wheat row spacing on evapotranpsiration, grain yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 97(8), pages 1126-1132, August.
    9. Shaaban, Ahmad Shams Aldien & Wahbi, Ammar & Sinclair, Thomas R., 2018. "Sowing date and mulch to improve water use and yield of wheat and barley in the Middle East environment," Agricultural Systems, Elsevier, vol. 165(C), pages 26-32.
    10. Jia, Qianmin & Sun, Lefeng & Ali, Shahzad & Zhang, Yan & Liu, Donghua & Kamran, Muhammad & Zhang, Peng & Jia, Zhikuan & Ren, Xiaolong, 2018. "Effect of planting density and pattern on maize yield and rainwater use efficiency in the Loess Plateau in China," Agricultural Water Management, Elsevier, vol. 202(C), pages 19-32.
    11. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Wenlong & Gu, Xiaobo & Du, Yadan & Zheng, Xiaobo & Lu, Shiyu & Cheng, Zhikai & Cai, Wenjing & Chang, Tian, 2023. "Optimizing nitrogen, phosphorus, and potassium fertilization regimes to improve maize productivity under double ridge-furrow planting with full film mulching," Agricultural Water Management, Elsevier, vol. 287(C).
    2. Chang, Lina & Liu, Rui & Yan, Jiakun & Zhang, Suiqi, 2024. "Unperforated film-covered planting contributes to improved film recovery rates and foxtail millet grain yields in sandy soils," Agricultural Water Management, Elsevier, vol. 294(C).
    3. Yin, Tao & Yao, Zhipeng & Yan, Changrong & Liu, Qi & Ding, Xiaodong & He, Wenqing, 2023. "Maize yield reduction is more strongly related to soil moisture fluctuation than soil temperature change under biodegradable film vs plastic film mulching in a semi-arid region of northern China," Agricultural Water Management, Elsevier, vol. 287(C).
    4. Linlin Ye & Yuanxiao Xu & Guofeng Zhu & Wenhao Zhang & Yinying Jiao, 2023. "Effects of Different Mulch Types on Farmland Soil Moisture in an Artificial Oasis Area," Land, MDPI, vol. 13(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Rui & He, Min & Xu, Haidong & Zhang, Kun & Zhang, Mingcai & Ren, Dan & Li, Zhaohu & Zhou, Yuyi & Duan, Liusheng, 2023. "A novel plant growth regulator brazide improved maize water productivity in the arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 287(C).
    2. Li, Wenlong & Gu, Xiaobo & Du, Yadan & Zheng, Xiaobo & Lu, Shiyu & Cheng, Zhikai & Cai, Wenjing & Chang, Tian, 2023. "Optimizing nitrogen, phosphorus, and potassium fertilization regimes to improve maize productivity under double ridge-furrow planting with full film mulching," Agricultural Water Management, Elsevier, vol. 287(C).
    3. Cameira, Maria do Rosário & Rodrigo, Isabel & Garção, Andreia & Neves, Manuela & Ferreira, Antónia & Paredes, Paula, 2024. "Linking participatory approach and rapid appraisal methods to select potential innovations in collective irrigation systems," Agricultural Water Management, Elsevier, vol. 299(C).
    4. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    5. Liu, Xiaoli & Wang, Yandong & Zhang, Yuehe & Ren, Xiaolong & Chen, Xiaoli, 2022. "Can rainwater harvesting replace conventional irrigation for winter wheat production in dry semi-humid areas in China?," Agricultural Water Management, Elsevier, vol. 272(C).
    6. Hao, Baozhen & Ma, Jingli & Si, Shihua & Wang, Xiaojie & Wang, Shuli & Li, Fengmei & Jiang, Lina, 2024. "Response of grain yield and water productivity to plant density in drought-tolerant maize cultivar under irrigated and rainfed conditions," Agricultural Water Management, Elsevier, vol. 298(C).
    7. Wang, Linlin & Li, Lingling & Xie, Junhong & Luo, Zhuzhu & Sumera, Anwar & Zechariah, Effah & Fudjoe, Setor Kwami & Palta, Jairo A. & Chen, Yinglong, 2022. "Does plastic mulching reduce water footprint in field crops in China? A meta-analysis," Agricultural Water Management, Elsevier, vol. 260(C).
    8. Li, Cheng & Luo, Xiaoqi & Wang, Naijiang & Wu, Wenjie & Li, Yue & Quan, Hao & Zhang, Tibin & Ding, Dianyuan & Dong, Qin’ge & Feng, Hao, 2022. "Transparent plastic film combined with deficit irrigation improves hydrothermal status of the soil-crop system and spring maize growth in arid areas," Agricultural Water Management, Elsevier, vol. 265(C).
    9. Abdel-Sattar, Mahmoud & Al-Obeed, Rashid S. & Makhasha, Essa & Mostafa, Laila Y. & Abdelzaher, Rania A.E. & Rihan, Hail Z., 2024. "Improving mangoes' productivity and crop water productivity by 24-epibrassinosteroids and hydrogen peroxide under deficit irrigation," Agricultural Water Management, Elsevier, vol. 298(C).
    10. Tamimi, Mansoor Al & Green, Steve & Hammami, Zied & Ammar, Khalil & Ketbi, Mouza Al & Al-Shrouf, Ali M. & Dawoud, Mohamed & Kennedy, Lesley & Clothier, Brent, 2022. "Evapotranspiration and crop coefficients using lysimeter measurements for food crops in the hyper-arid United Arab Emirates," Agricultural Water Management, Elsevier, vol. 272(C).
    11. Zhao, Xiaole & Mak-Mensah, Erastus & Zhao, Wucheng & Wang, Qi & Zhou, Xujiao & Zhang, Dengkui & Zhu, Jinhui & Qi, Wenjia & Liu, Qinglin & Li, Xiaoling & Li, Xuchun & Liu, Bing, 2024. "Optimized ridge-furrow technology with biochar amendment for alfalfa yield enhancement and soil erosion reduction based on a structural equation model on sloping land," Agricultural Water Management, Elsevier, vol. 298(C).
    12. Liu, Junming & Si, Zhuanyun & Wu, Lifeng & Shen, Xiaojun & Gao, Yang & Duan, Aiwang, 2023. "High-low seedbed cultivation drives the efficient utilization of key production resources and the improvement of wheat productivity in the North China Plain," Agricultural Water Management, Elsevier, vol. 285(C).
    13. Han, Xuyang & Feng, Yu & Zhao, Jie & Ren, Aixia & Lin, Wen & Sun, Min & Gao, Zhiqiang, 2022. "Hydrothermal conditions impact yield, yield gap and water use efficiency of dryland wheat under different mulching practice in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 264(C).
    14. Quan, Hao & Wu, Lihong & Ding, Dianyuan & Yang, Zhenting & Wang, Naijiang & Chen, Guangjie & Li, Cheng & Dong, Qin'ge & Feng, Hao & Zhang, Tibin & Siddique, Kadambot H.M., 2022. "Interaction between soil water and fertilizer utilization on maize under plastic mulching in an arid irrigation region of China," Agricultural Water Management, Elsevier, vol. 265(C).
    15. Li, Rui & Chai, Shouxi & Chai, Yuwei & Li, Yawei & Lan, Xuemei & Ma, Jiantao & Cheng, Hongbo & Chang, Lei, 2021. "Mulching optimizes water consumption characteristics and improves crop water productivity on the semi-arid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 254(C).
    16. Arbizu-Milagro, Julia & Castillo-Ruiz, Francisco J. & Tascón, Alberto & Peña, Jose M., 2023. "Effects of regulated, precision and continuous deficit irrigation on the growth and productivity of a young super high-density olive orchard," Agricultural Water Management, Elsevier, vol. 286(C).
    17. Gustavo Castilho Beruski & Luis Miguel Schiebelbein & André Belmont Pereira, 2020. "Maize Yield Components as Affected by Plant Population, Planting Date and Soil Coverings in Brazil," Agriculture, MDPI, vol. 10(12), pages 1-20, November.
    18. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
    19. Abd El-Wahed, M.H. & Ali, E.A., 2013. "Effect of irrigation systems, amounts of irrigation water and mulching on corn yield, water use efficiency and net profit," Agricultural Water Management, Elsevier, vol. 120(C), pages 64-71.
    20. Feng, Z.Y. & Qin, T. & Du, X.Z. & Sheng, F. & Li, C.F., 2021. "Effects of irrigation regime and rice variety on greenhouse gas emissions and grain yields from paddy fields in central China," Agricultural Water Management, Elsevier, vol. 250(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:274:y:2022:i:c:s0378377422004991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.