IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v292y2024ics0378377423005309.html
   My bibliography  Save this article

Estimating reference crop evapotranspiration using improved convolutional bidirectional long short-term memory network by multi-head attention mechanism in the four climatic zones of China

Author

Listed:
  • Dong, Juan
  • Xing, Liwen
  • Cui, Ningbo
  • Zhao, Lu
  • Guo, Li
  • Wang, Zhihui
  • Du, Taisheng
  • Tan, Mingdong
  • Gong, Daozhi

Abstract

Accurate reference crop evapotranspiration (ET0) estimation is essential for agricultural water management, crop productivity, and irrigation systems. As the standard ET0 estimation method, the Penman-Monteith equation has been widely recommended worldwide. However, its application is still restricted to comprehensive meteorological data deficiency, making the exploration of alternative simpler models for acceptable ET0 estimation highly meaningful. Concerning the aforementioned requirement, this study developed the novel deep learning model (MA-CNN-BiLSTM), which incorporates Multi-Head Attention mechanism (MA), Convolutional Neural Network (CNN), and Bidirectional Long Short-Term Memory network (BiLSTM) as intricate relationship processor, feature extractor, and regression component, to estimate ET0 based on radiation-based (Rn-based), humidity-based (RH-based), and temperature-based (T-based) input combinations at 600 stations during 1961–2020 throughout China under internal and external cross-validation strategies. Besides, through a comparative evaluation among MA-CNN-BiLSTM, CNN-BiLSTM, BiLSTM, LSTM, Multivariate Adaptive Regression Splines (MARS), and empirical models, the result indicated that MA-CNN-BiLSTM achieved superior precision, with values of Determination Coefficient (R2), Nash–Sutcliffe efficiency coefficient (NSE), Relative Root Mean Square Error (RRMSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE) ranging 0.877–0.972, 0.844–0.962, 0.129–0.292, 0.294–0.644 mm d−1, 0.244–0.566 mm d−1 for internal strategy and 0.797–0.927, 0.786–0.920, 0.162–0.335, 0.409–0.969 mm d−1, 0.294–0.699 mm d−1 for external strategy. Specifically, Rn-based MA-CNN-BiLSTM excelled in the temperate continental zone (TCZ) and mountain plateau zone (MPZ), while RH-based MA-CNN-BiLSTM yielded best precision in others. Furthermore, the internal strategy was superior to external strategy by 2.74–106.04% for R2, 1.11–120.49% for NSE, 1.41–40.27% for RRMSE, 1.68–45.53% for RMSE, and 1.21–38.87% for MAE, respectively. In summary, the main contribution of the present study is the proposal of a novel LSTM-type ET0 model (MA-CNN-BiLSTM) to cope with various data-missing scenarios throughout China, which can provide effective support for decision-making in regional agriculture water management.

Suggested Citation

  • Dong, Juan & Xing, Liwen & Cui, Ningbo & Zhao, Lu & Guo, Li & Wang, Zhihui & Du, Taisheng & Tan, Mingdong & Gong, Daozhi, 2024. "Estimating reference crop evapotranspiration using improved convolutional bidirectional long short-term memory network by multi-head attention mechanism in the four climatic zones of China," Agricultural Water Management, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:agiwat:v:292:y:2024:i:c:s0378377423005309
    DOI: 10.1016/j.agwat.2023.108665
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423005309
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108665?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qu, Zhijian & Xu, Juan & Wang, Zixiao & Chi, Rui & Liu, Hanxin, 2021. "Prediction of electricity generation from a combined cycle power plant based on a stacking ensemble and its hyperparameter optimization with a grid-search method," Energy, Elsevier, vol. 227(C).
    2. Zhang, Yi-Ming & Wang, Hao, 2023. "Multi-head attention-based probabilistic CNN-BiLSTM for day-ahead wind speed forecasting," Energy, Elsevier, vol. 278(PA).
    3. Xing, Liwen & Zhao, Lu & Cui, Ningbo & Liu, Chunwei & Guo, Li & Du, Taisheng & Wu, Zongjun & Gong, Daozhi & Jiang, Shouzheng, 2023. "Apple tree transpiration estimated using the Penman-Monteith model integrated with optimized jarvis model," Agricultural Water Management, Elsevier, vol. 276(C).
    4. Wan, Anping & Chang, Qing & AL-Bukhaiti, Khalil & He, Jiabo, 2023. "Short-term power load forecasting for combined heat and power using CNN-LSTM enhanced by attention mechanism," Energy, Elsevier, vol. 282(C).
    5. Zha, Wenshu & Liu, Yuping & Wan, Yujin & Luo, Ruilan & Li, Daolun & Yang, Shan & Xu, Yanmei, 2022. "Forecasting monthly gas field production based on the CNN-LSTM model," Energy, Elsevier, vol. 260(C).
    6. Lu, Yingjie & Li, Tao & Hu, Hui & Zeng, Xuemei, 2023. "Short-term prediction of reference crop evapotranspiration based on machine learning with different decomposition methods in arid areas of China," Agricultural Water Management, Elsevier, vol. 279(C).
    7. Yin, Juan & Deng, Zhen & Ines, Amor V.M. & Wu, Junbin & Rasu, Eeswaran, 2020. "Forecast of short-term daily reference evapotranspiration under limited meteorological variables using a hybrid bi-directional long short-term memory model (Bi-LSTM)," Agricultural Water Management, Elsevier, vol. 242(C).
    8. Gonzalez T., Francisco & Pavek, Mark J. & Holden, Zachary J. & Garza, Rudy, 2023. "Evaluating potato evapotranspiration and crop coefficients in the Columbia Basin of Washington state," Agricultural Water Management, Elsevier, vol. 286(C).
    9. Yan, Shicheng & Wu, Lifeng & Fan, Junliang & Zhang, Fucang & Zou, Yufeng & Wu, You, 2021. "A novel hybrid WOA-XGB model for estimating daily reference evapotranspiration using local and external meteorological data: Applications in arid and humid regions of China," Agricultural Water Management, Elsevier, vol. 244(C).
    10. Ferreira, Lucas Borges & da Cunha, Fernando França, 2020. "New approach to estimate daily reference evapotranspiration based on hourly temperature and relative humidity using machine learning and deep learning," Agricultural Water Management, Elsevier, vol. 234(C).
    11. Joseph, Lionel P. & Deo, Ravinesh C. & Prasad, Ramendra & Salcedo-Sanz, Sancho & Raj, Nawin & Soar, Jeffrey, 2023. "Near real-time wind speed forecast model with bidirectional LSTM networks," Renewable Energy, Elsevier, vol. 204(C), pages 39-58.
    12. Cui, Ningbo & He, Ziling & Jiang, Shouzheng & Wang, Mingjun & Yu, Xiuyun & Zhao, Lu & Qiu, Rangjian & Gong, Daozhi & Wang, Yaosheng & Feng, Yu, 2023. "Inter-comparison of the Penman-Monteith type model in modeling the evapotranspiration and its components in an orchard plantation of Southwest China," Agricultural Water Management, Elsevier, vol. 289(C).
    13. Jiang, Chengcheng & Zhu, Qunzhi, 2023. "Evaluating the most significant input parameters for forecasting global solar radiation of different sequences based on Informer," Applied Energy, Elsevier, vol. 348(C).
    14. Su, Qiong & Singh, Vijay P. & Karthikeyan, Raghupathy, 2022. "Improved reference evapotranspiration methods for regional irrigation water demand estimation," Agricultural Water Management, Elsevier, vol. 274(C).
    15. Chen, Wei-Hsin & Lo, Hsiu-Ju & Aniza, Ria & Lin, Bo-Jhih & Park, Young-Kwon & Kwon, Eilhann E. & Sheen, Herng-Kuang & Grafilo, Laumar Alan Dave R., 2022. "Forecast of glucose production from biomass wet torrefaction using statistical approach along with multivariate adaptive regression splines, neural network and decision tree," Applied Energy, Elsevier, vol. 324(C).
    16. Xiong, Jinlin & Peng, Tian & Tao, Zihan & Zhang, Chu & Song, Shihao & Nazir, Muhammad Shahzad, 2023. "A dual-scale deep learning model based on ELM-BiLSTM and improved reptile search algorithm for wind power prediction," Energy, Elsevier, vol. 266(C).
    17. Valipour, Mohammad & Khoshkam, Helaleh & Bateni, Sayed M. & Jun, Changhyun & Band, Shahab S., 2023. "Hybrid machine learning and deep learning models for multi-step-ahead daily reference evapotranspiration forecasting in different climate regions across the contiguous United States," Agricultural Water Management, Elsevier, vol. 283(C).
    18. Feng, Yu & Cui, Ningbo & Gong, Daozhi & Zhang, Qingwen & Zhao, Lu, 2017. "Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modelling," Agricultural Water Management, Elsevier, vol. 193(C), pages 163-173.
    19. Ahmadi, Farshad & Mehdizadeh, Saeid & Mohammadi, Babak & Pham, Quoc Bao & DOAN, Thi Ngoc Canh & Vo, Ngoc Duong, 2021. "Application of an artificial intelligence technique enhanced with intelligent water drops for monthly reference evapotranspiration estimation," Agricultural Water Management, Elsevier, vol. 244(C).
    20. Xing, Liwen & Cui, Ningbo & Liu, Chunwei & Zhao, Lu & Guo, Li & Du, Taisheng & Zhan, Cun & Wu, Zongjun & Wen, Shenglin & Jiang, Shouzheng, 2022. "Estimation of daily apple tree transpiration in the Loess Plateau region of China using deep learning models," Agricultural Water Management, Elsevier, vol. 273(C).
    21. Fan, Junliang & Wu, Lifeng & Zhang, Fucang & Cai, Huanjie & Zeng, Wenzhi & Wang, Xiukang & Zou, Haiyang, 2019. "Empirical and machine learning models for predicting daily global solar radiation from sunshine duration: A review and case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 186-212.
    22. Yang, Yong & Chen, Rensheng & Han, Chuntan & Liu, Zhangwen, 2021. "Evaluation of 18 models for calculating potential evapotranspiration in different climatic zones of China," Agricultural Water Management, Elsevier, vol. 244(C).
    23. Kim, Ho-Jun & Chandrasekara, Sewwandhi & Kwon, Hyun-Han & Lima, Carlos & Kim, Tae-woong, 2023. "A novel multi-scale parameter estimation approach to the Hargreaves-Samani equation for estimation of Penman-Monteith reference evapotranspiration," Agricultural Water Management, Elsevier, vol. 275(C).
    24. Liu, Xiaoying & Xu, Chunying & Zhong, Xiuli & Li, Yuzhong & Yuan, Xiaohuan & Cao, Jingfeng, 2017. "Comparison of 16 models for reference crop evapotranspiration against weighing lysimeter measurement," Agricultural Water Management, Elsevier, vol. 184(C), pages 145-155.
    25. Mohammadi, Babak & Mehdizadeh, Saeid, 2020. "Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm," Agricultural Water Management, Elsevier, vol. 237(C).
    26. Fan, Junliang & Zheng, Jing & Wu, Lifeng & Zhang, Fucang, 2021. "Estimation of daily maize transpiration using support vector machines, extreme gradient boosting, artificial and deep neural networks models," Agricultural Water Management, Elsevier, vol. 245(C).
    27. Martí, Pau & González-Altozano, Pablo & López-Urrea, Ramón & Mancha, Luis A. & Shiri, Jalal, 2015. "Modeling reference evapotranspiration with calculated targets. Assessment and implications," Agricultural Water Management, Elsevier, vol. 149(C), pages 81-90.
    28. Zhou, Di & Zhuang, Xiao & Zuo, Hongfu & Cai, Jing & Zhao, Xufeng & Xiang, Jiawei, 2022. "A model fusion strategy for identifying aircraft risk using CNN and Att-BiLSTM," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    29. Liu, Xiaoying & Mei, Xurong & Li, Yuzhong & Wang, Qingsuo & Zhang, Yanqing & Porter, John Roy, 2009. "Variation in reference crop evapotranspiration caused by the Ångström-Prescott coefficient: Locally calibrated versus the FAO recommended," Agricultural Water Management, Elsevier, vol. 96(7), pages 1137-1145, July.
    30. Martí, Pau & Gasque, María, 2010. "Ancillary data supply strategies for improvement of temperature-based ETo ANN models," Agricultural Water Management, Elsevier, vol. 97(7), pages 939-955, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen, Shenglin & Cui, Ningbo & Wang, Yaosheng & Gong, Daozhi & Xing, Liwen & Wu, Zongjun & Zhang, Yixuan & Zhao, Long & Fan, Junliang & Wang, Zhihui, 2024. "Optimizing deficit drip irrigation to improve yield,quality, and water productivity of apple in Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 296(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Juan & Xing, Liwen & Cui, Ningbo & Guo, Li & Liang, Chuan & Zhao, Lu & Wang, Zhihui & Gong, Daozhi, 2024. "Estimating reference crop evapotranspiration using optimized empirical methods with a novel improved Grey Wolf Algorithm in four climatic regions of China," Agricultural Water Management, Elsevier, vol. 291(C).
    2. Bellido-Jiménez, Juan A. & Estévez, Javier & García-Marín, Amanda P., 2022. "A regional machine learning method to outperform temperature-based reference evapotranspiration estimations in Southern Spain," Agricultural Water Management, Elsevier, vol. 274(C).
    3. Roy, Dilip Kumar & Lal, Alvin & Sarker, Khokan Kumer & Saha, Kowshik Kumar & Datta, Bithin, 2021. "Optimization algorithms as training approaches for prediction of reference evapotranspiration using adaptive neuro fuzzy inference system," Agricultural Water Management, Elsevier, vol. 255(C).
    4. Zhang, Lei & Zhao, Xin & Zhu, Ge & He, Jun & Chen, Jian & Chen, Zhicheng & Traore, Seydou & Liu, Junguo & Singh, Vijay P., 2023. "Short-term daily reference evapotranspiration forecasting using temperature-based deep learning models in different climate zones in China," Agricultural Water Management, Elsevier, vol. 289(C).
    5. Valipour, Mohammad & Khoshkam, Helaleh & Bateni, Sayed M. & Jun, Changhyun & Band, Shahab S., 2023. "Hybrid machine learning and deep learning models for multi-step-ahead daily reference evapotranspiration forecasting in different climate regions across the contiguous United States," Agricultural Water Management, Elsevier, vol. 283(C).
    6. Zhou, Hanmi & Ma, Linshuang & Niu, Xiaoli & Xiang, Youzhen & Chen, Jiageng & Su, Yumin & Li, Jichen & Lu, Sibo & Chen, Cheng & Wu, Qi, 2024. "A novel hybrid model combined with ensemble embedded feature selection method for estimating reference evapotranspiration in the North China Plain," Agricultural Water Management, Elsevier, vol. 296(C).
    7. Wu, Lifeng & Peng, Youwen & Fan, Junliang & Wang, Yicheng & Huang, Guomin, 2021. "A novel kernel extreme learning machine model coupled with K-means clustering and firefly algorithm for estimating monthly reference evapotranspiration in parallel computation," Agricultural Water Management, Elsevier, vol. 245(C).
    8. Hadeel E. Khairan & Salah L. Zubaidi & Mustafa Al-Mukhtar & Anmar Dulaimi & Hussein Al-Bugharbee & Furat A. Al-Faraj & Hussein Mohammed Ridha, 2023. "Assessing the Potential of Hybrid-Based Metaheuristic Algorithms Integrated with ANNs for Accurate Reference Evapotranspiration Forecasting," Sustainability, MDPI, vol. 15(19), pages 1-19, September.
    9. Zhang, Chu & Li, Zhengbo & Ge, Yida & Liu, Qianlong & Suo, Leiming & Song, Shihao & Peng, Tian, 2024. "Enhancing short-term wind speed prediction based on an outlier-robust ensemble deep random vector functional link network with AOA-optimized VMD," Energy, Elsevier, vol. 296(C).
    10. Malik, Anurag & Jamei, Mehdi & Ali, Mumtaz & Prasad, Ramendra & Karbasi, Masoud & Yaseen, Zaher Mundher, 2022. "Multi-step daily forecasting of reference evapotranspiration for different climates of India: A modern multivariate complementary technique reinforced with ridge regression feature selection," Agricultural Water Management, Elsevier, vol. 272(C).
    11. Yan, Shicheng & Wu, Lifeng & Fan, Junliang & Zhang, Fucang & Zou, Yufeng & Wu, You, 2021. "A novel hybrid WOA-XGB model for estimating daily reference evapotranspiration using local and external meteorological data: Applications in arid and humid regions of China," Agricultural Water Management, Elsevier, vol. 244(C).
    12. Su, Qiong & Singh, Vijay P. & Karthikeyan, Raghupathy, 2022. "Improved reference evapotranspiration methods for regional irrigation water demand estimation," Agricultural Water Management, Elsevier, vol. 274(C).
    13. Bellido-Jiménez, Juan Antonio & Estévez, Javier & García-Marín, Amanda Penélope, 2021. "New machine learning approaches to improve reference evapotranspiration estimates using intra-daily temperature-based variables in a semi-arid region of Spain," Agricultural Water Management, Elsevier, vol. 245(C).
    14. Yan, Xiuying & Ji, Xingxing & Meng, Qinglong & Sun, Hang & Lei, Yu, 2024. "A hybrid prediction model of improved bidirectional long short-term memory network for cooling load based on PCANet and attention mechanism," Energy, Elsevier, vol. 292(C).
    15. Xing, Liwen & Cui, Ningbo & Liu, Chunwei & Guo, Li & Zhao, Long & Wu, Zongjun & Jiang, Xuelian & Wen, Shenglin & Zhao, Lu & Gong, Daozhi, 2024. "Estimating daily kiwifruit evapotranspiration under regulated deficit irrigation strategy using optimized surface resistance based model," Agricultural Water Management, Elsevier, vol. 295(C).
    16. Wang, Shuangxin & Shi, Jiarong & Yang, Wei & Yin, Qingyan, 2024. "High and low frequency wind power prediction based on Transformer and BiGRU-Attention," Energy, Elsevier, vol. 288(C).
    17. Lu, Yingjie & Li, Tao & Hu, Hui & Zeng, Xuemei, 2023. "Short-term prediction of reference crop evapotranspiration based on machine learning with different decomposition methods in arid areas of China," Agricultural Water Management, Elsevier, vol. 279(C).
    18. Yamaç, Sevim Seda, 2021. "Artificial intelligence methods reliably predict crop evapotranspiration with different combinations of meteorological data for sugar beet in a semiarid area," Agricultural Water Management, Elsevier, vol. 254(C).
    19. Feng, Yu & Hao, Weiping & Li, Haoru & Cui, Ningbo & Gong, Daozhi & Gao, Lili, 2020. "Machine learning models to quantify and map daily global solar radiation and photovoltaic power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    20. Qu, Zhijian & Hou, Xinxing & Li, Jian & Hu, Wenbo, 2024. "Short-term wind farm cluster power prediction based on dual feature extraction and quadratic decomposition aggregation," Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:292:y:2024:i:c:s0378377423005309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.