IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v244y2021ics0378377420320928.html
   My bibliography  Save this article

Evaluation of 18 models for calculating potential evapotranspiration in different climatic zones of China

Author

Listed:
  • Yang, Yong
  • Chen, Rensheng
  • Han, Chuntan
  • Liu, Zhangwen

Abstract

The accurate calculation of potential evapotranspiration (PET) is a critical step in researching evapotranspiration, hydrology and many other fields. Numerous models have been developed to quantify PET from standard meteorological observations, and combination methods are usually considered the most physically reasonable. However, adequate observations of meteorological variables for combination methods are unavailable in many locations, making it necessary to select alternative PET models with fewer data requirements. Here, a set of 18 models including four aerodynamic methods, five temperature-based methods, six radiation-based methods, and three combination methods were evaluated using meteorological measurements from 789 stations in four climatic zones in China: the mountain plateau zone (MPZ), temperate monsoon zone (TMZ), temperate continental zone (TCZ), and subtropical monsoon zone (SMZ). The annual PET calculated in each of the four climatic zones showed large discrepancies among the 18 models, and the largest disparity nationwide was 2.95-fold. The combination models performed best for calculating PET in all four climatic zones, followed by the radiation-based models, and both categories outperformed the aerodynamic and temperature-based methods. The Rohwer model was the only recommended aerodynamic method, and the Romanenko model was the only recommended temperature-based method for calculating PET in China. The Turc model was marginally the best radiation-based model in the SMZ, TMZ and TCZ, and the Hargreaves model in the MPZ, but both should be applied with caution in cold months. The Penman model was the recommended combination method in all four zones. Further comparison of the best models from each category showed that the Rohwer model might overestimate PET in the TMZ and TCZ, and underestimate it in the MPZ and SMZ. The Romanenko model overestimated PET, and the Turc and Hargreaves models both underestimated PET in all four zones, especially in the MPZ. The empirical coefficients of the five recommended models were regional calibrated to meet the requirements of PET calculation in different climatic zones.

Suggested Citation

  • Yang, Yong & Chen, Rensheng & Han, Chuntan & Liu, Zhangwen, 2021. "Evaluation of 18 models for calculating potential evapotranspiration in different climatic zones of China," Agricultural Water Management, Elsevier, vol. 244(C).
  • Handle: RePEc:eee:agiwat:v:244:y:2021:i:c:s0378377420320928
    DOI: 10.1016/j.agwat.2020.106545
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377420320928
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106545?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiang, Keyu & Li, Yi & Horton, Robert & Feng, Hao, 2020. "Similarity and difference of potential evapotranspiration and reference crop evapotranspiration – a review," Agricultural Water Management, Elsevier, vol. 232(C).
    2. C.-Y. Xu & V. Singh, 2002. "Cross Comparison of Empirical Equations for Calculating Potential Evapotranspiration with Data from Switzerland," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 16(3), pages 197-219, June.
    3. Liu, Fa & Sun, Fubao & Liu, Wenbin & Wang, Tingting & Wang, Hong & Wang, Xunming & Lim, Wee Ho, 2019. "On wind speed pattern and energy potential in China," Applied Energy, Elsevier, vol. 236(C), pages 867-876.
    4. Liu, Xiaoying & Xu, Chunying & Zhong, Xiuli & Li, Yuzhong & Yuan, Xiaohuan & Cao, Jingfeng, 2017. "Comparison of 16 models for reference crop evapotranspiration against weighing lysimeter measurement," Agricultural Water Management, Elsevier, vol. 184(C), pages 145-155.
    5. Valipour, Mohammad & Gholami Sefidkouhi, Mohammad Ali & Raeini−Sarjaz, Mahmoud, 2017. "Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events," Agricultural Water Management, Elsevier, vol. 180(PA), pages 50-60.
    6. Slavisa Trajkovic & Srdjan Kolakovic, 2009. "Evaluation of Reference Evapotranspiration Equations Under Humid Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(14), pages 3057-3067, November.
    7. Helge Bormann, 2011. "Sensitivity analysis of 18 different potential evapotranspiration models to observed climatic change at German climate stations," Climatic Change, Springer, vol. 104(3), pages 729-753, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Juan & Xing, Liwen & Cui, Ningbo & Guo, Li & Liang, Chuan & Zhao, Lu & Wang, Zhihui & Gong, Daozhi, 2024. "Estimating reference crop evapotranspiration using optimized empirical methods with a novel improved Grey Wolf Algorithm in four climatic regions of China," Agricultural Water Management, Elsevier, vol. 291(C).
    2. Su, Qiong & Singh, Vijay P. & Karthikeyan, Raghupathy, 2022. "Improved reference evapotranspiration methods for regional irrigation water demand estimation," Agricultural Water Management, Elsevier, vol. 274(C).
    3. Kim, Ho-Jun & Chandrasekara, Sewwandhi & Kwon, Hyun-Han & Lima, Carlos & Kim, Tae-woong, 2023. "A novel multi-scale parameter estimation approach to the Hargreaves-Samani equation for estimation of Penman-Monteith reference evapotranspiration," Agricultural Water Management, Elsevier, vol. 275(C).
    4. Mingcong Lv & Zhongmei Wang, 2024. "Research on Meteorological Drought Risk Prediction in the Daqing River Basin Based on HADGEM3-RA," Agriculture, MDPI, vol. 14(10), pages 1-20, October.
    5. Dong, Juan & Xing, Liwen & Cui, Ningbo & Zhao, Lu & Guo, Li & Wang, Zhihui & Du, Taisheng & Tan, Mingdong & Gong, Daozhi, 2024. "Estimating reference crop evapotranspiration using improved convolutional bidirectional long short-term memory network by multi-head attention mechanism in the four climatic zones of China," Agricultural Water Management, Elsevier, vol. 292(C).
    6. Edwin Pino-Vargas & Edgar Taya-Acosta & Eusebio Ingol-Blanco & Alfonso Torres-Rúa, 2022. "Deep Machine Learning for Forecasting Daily Potential Evapotranspiration in Arid Regions, Case: Atacama Desert Header," Agriculture, MDPI, vol. 12(12), pages 1-15, November.
    7. Valipour, Mohammad & Khoshkam, Helaleh & Bateni, Sayed M. & Jun, Changhyun & Band, Shahab S., 2023. "Hybrid machine learning and deep learning models for multi-step-ahead daily reference evapotranspiration forecasting in different climate regions across the contiguous United States," Agricultural Water Management, Elsevier, vol. 283(C).
    8. Wang, Hong & Sun, Fubao & Liu, Fa & Wang, Tingting & Liu, Wenbin & Feng, Yao, 2023. "Reconstruction of the pan evaporation based on meteorological factors with machine learning method over China," Agricultural Water Management, Elsevier, vol. 287(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiang, Keyu & Li, Yi & Horton, Robert & Feng, Hao, 2020. "Similarity and difference of potential evapotranspiration and reference crop evapotranspiration – a review," Agricultural Water Management, Elsevier, vol. 232(C).
    2. Su, Qiong & Singh, Vijay P. & Karthikeyan, Raghupathy, 2022. "Improved reference evapotranspiration methods for regional irrigation water demand estimation," Agricultural Water Management, Elsevier, vol. 274(C).
    3. Singh Rawat, Kishan & Kumar Singh, Sudhir & Bala, Anju & Szabó, Szilárd, 2019. "Estimation of crop evapotranspiration through spatial distributed crop coefficient in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 213(C), pages 922-933.
    4. Muniandy, Josilva M. & Yusop, Zulkifli & Askari, Muhamad, 2016. "Evaluation of reference evapotranspiration models and determination of crop coefficient for Momordica charantia and Capsicum annuum," Agricultural Water Management, Elsevier, vol. 169(C), pages 77-89.
    5. Mohammad Valipour, 2014. "Use of average data of 181 synoptic stations for estimation of reference crop evapotranspiration by temperature-based methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4237-4255, September.
    6. Peddinti, Srinivasa Rao & Kambhammettu, BVN P, 2019. "Dynamics of crop coefficients for citrus orchards of central India using water balance and eddy covariance flux partition techniques," Agricultural Water Management, Elsevier, vol. 212(C), pages 68-77.
    7. Shirmohammadi-Aliakbarkhani, Zahra & Saberali, Seyed Farhad, 2020. "Evaluating of eight evapotranspiration estimation methods in arid regions of Iran," Agricultural Water Management, Elsevier, vol. 239(C).
    8. Chatzithomas, C.D. & Alexandris, S.G., 2015. "Solar radiation and relative humidity based, empirical method, to estimate hourly reference evapotranspiration," Agricultural Water Management, Elsevier, vol. 152(C), pages 188-197.
    9. Süleyman Özhan & Ferhat Gökbulak & Yusuf Serengil & Mehmet Özcan, 2010. "Evapotranspiration from a Mixed Deciduous Forest Ecosystem," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2353-2363, August.
    10. Hossein Tabari, 2010. "Evaluation of Reference Crop Evapotranspiration Equations in Various Climates," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2311-2337, August.
    11. Malakshahi, Amir- Ashkan & Darzi- Naftchali, Abdullah & Mohseni, Behrooz, 2020. "Analyzing water table depth fluctuation response to evapotranspiration involving DRAINMOD model," Agricultural Water Management, Elsevier, vol. 234(C).
    12. Dong, Juan & Xing, Liwen & Cui, Ningbo & Guo, Li & Liang, Chuan & Zhao, Lu & Wang, Zhihui & Gong, Daozhi, 2024. "Estimating reference crop evapotranspiration using optimized empirical methods with a novel improved Grey Wolf Algorithm in four climatic regions of China," Agricultural Water Management, Elsevier, vol. 291(C).
    13. Paweł Bogawski & Ewa Bednorz, 2014. "Comparison and Validation of Selected Evapotranspiration Models for Conditions in Poland (Central Europe)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 5021-5038, November.
    14. Ali Sabziparvar & Roya Mousavi & Safar Marofi & Niaz Ebrahimipak & Majid Heidari, 2013. "An Improved Estimation of the Angstrom–Prescott Radiation Coefficients for the FAO56 Penman–Monteith Evapotranspiration Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2839-2854, June.
    15. Wang, Yadong & Wang, Delu & Shi, Xunpeng, 2023. "Sustainable development pathways of China's wind power industry under uncertainties: Perspective from economic benefits and technical potential," Energy Policy, Elsevier, vol. 182(C).
    16. Liu, Weiwei & Song, Yifan & Bi, Kexin, 2021. "Exploring the patent collaboration network of China's wind energy industry: A study based on patent data from CNIPA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    17. Xueping Zhu & Chi Zhang & Guangtao Fu & Yu Li & Wei Ding, 2017. "Bi-Level Optimization for Determining Operating Strategies for Inter-Basin Water Transfer-Supply Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4415-4432, November.
    18. Liang, Yushi & Wu, Chunbing & Ji, Xiaodong & Zhang, Mulan & Li, Yiran & He, Jianjun & Qin, Zhiheng, 2022. "Estimation of the influences of spatiotemporal variations in air density on wind energy assessment in China based on deep neural network," Energy, Elsevier, vol. 239(PC).
    19. Cunha, Angélica Carvalho & Filho, Luís Roberto Almeida Gabriel & Tanaka, Adriana Aki & Goes, Bruno Cesar & Putti, Fernando Ferrari, 2021. "Influence Of The Estimated Global Solar Radiation On The Reference Evapotranspiration Obtained Through The Penman-Monteith Fao 56 Method," Agricultural Water Management, Elsevier, vol. 243(C).
    20. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparison of empirical models to estimate monthly mean diffuse solar radiation from measured data: Case study for humid-subtropical climatic region of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1326-1342.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:244:y:2021:i:c:s0378377420320928. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.