IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v97y2010i7p939-955.html
   My bibliography  Save this article

Ancillary data supply strategies for improvement of temperature-based ETo ANN models

Author

Listed:
  • Martí, Pau
  • Gasque, María

Abstract

The development of new and more precise models for reference evapotranspiration (ETo) estimation from minimum climatic data is mandatory, since the application of existing methods that provide acceptable results is limited to those places where large amounts of reliable climatic data are available. The performance quality of empirical equations and their local calibrations is to be questioned in a large variety of climatic contexts. As an alternative to traditional techniques, artificial neural networks (ANNs) are highly appropriate for the modelling of non-linear processes, which is the case of evapotranspiration. Nevertheless, temperature-based ANN models do not always provide accurate enough ETo estimations and their performance depends highly on the specific relationships temperature-ETo of the studied continental context. This paper describes the performance improvement of temperature-based ANN models through the consideration of exogenous ETo records as ancillary inputs in different continental contexts of the autonomous Valencia region, on the Spanish Mediterranean coast. The influence on the model performance of the number of considered ancillary stations and the corresponding number of training patterns is also analysed. Finally, this performance is compared with existing empirical and ANN temperature-based models. The proposed models can be used with high accuracy not only for infilling purposes, but also for estimating ETo outside the training station. Concerning models which demand scant climatic inputs, the proposed model provides performances with lower associated errors than the currently existing temperature-based models, which only consider local data. The local performance of the model presents 0.084 of average absolute relative error (AARE). The external performance of the model presents 0.1072 of AARE.

Suggested Citation

  • Martí, Pau & Gasque, María, 2010. "Ancillary data supply strategies for improvement of temperature-based ETo ANN models," Agricultural Water Management, Elsevier, vol. 97(7), pages 939-955, July.
  • Handle: RePEc:eee:agiwat:v:97:y:2010:i:7:p:939-955
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(10)00065-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Landeras, Gorka & Ortiz-Barredo, Amaia & López, Jose Javier, 2008. "Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain)," Agricultural Water Management, Elsevier, vol. 95(5), pages 553-565, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Juan & Xing, Liwen & Cui, Ningbo & Zhao, Lu & Guo, Li & Wang, Zhihui & Du, Taisheng & Tan, Mingdong & Gong, Daozhi, 2024. "Estimating reference crop evapotranspiration using improved convolutional bidirectional long short-term memory network by multi-head attention mechanism in the four climatic zones of China," Agricultural Water Management, Elsevier, vol. 292(C).
    2. Yamaç, Sevim Seda & Todorovic, Mladen, 2020. "Estimation of daily potato crop evapotranspiration using three different machine learning algorithms and four scenarios of available meteorological data," Agricultural Water Management, Elsevier, vol. 228(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Yingjie & Li, Tao & Hu, Hui & Zeng, Xuemei, 2023. "Short-term prediction of reference crop evapotranspiration based on machine learning with different decomposition methods in arid areas of China," Agricultural Water Management, Elsevier, vol. 279(C).
    2. Feng, Yu & Jia, Yue & Cui, Ningbo & Zhao, Lu & Li, Chen & Gong, Daozhi, 2017. "Calibration of Hargreaves model for reference evapotranspiration estimation in Sichuan basin of southwest China," Agricultural Water Management, Elsevier, vol. 181(C), pages 1-9.
    3. Houshang Ghamarnia & Vahid Rezvani & Erfan Khodaei & Hossein Mirzaei, 2012. "Time and Place Calibration of the Hargreaves Equation for Estimating Monthly Reference Evapotranspiration under Different Climatic Conditions," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 4(3), pages 111-111, January.
    4. Seydou Traore & Yufeng Luo & Guy Fipps, 2017. "Gene-Expression Programming for Short-Term Forecasting of Daily Reference Evapotranspiration Using Public Weather Forecast Information," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4891-4908, December.
    5. Ali Rahimikhoob & Mahmood Behbahani & Javad Fakheri, 2012. "An Evaluation of Four Reference Evapotranspiration Models in a Subtropical Climate," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(10), pages 2867-2881, August.
    6. Shiri, Jalal, 2017. "Evaluation of FAO56-PM, empirical, semi-empirical and gene expression programming approaches for estimating daily reference evapotranspiration in hyper-arid regions of Iran," Agricultural Water Management, Elsevier, vol. 188(C), pages 101-114.
    7. Tianao Wu & Wei Zhang & Xiyun Jiao & Weihua Guo & Yousef Alhaj Hamoud, 2020. "Comparison of five Boosting-based models for estimating daily reference evapotranspiration with limited meteorological variables," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-28, June.
    8. Gafurov, Zafar & Eltazarov, S. & Akramov, Bekzod & Yuldashev, Tulkun & Djumaboev, Kakhramon & Anarbekov, Oyture, 2018. "Modifying Hargreaves-Samani equation for estimating reference evapotranspiration in dryland regions of Amudarya River Basin," Papers published in Journals (Open Access), International Water Management Institute, pages 9(10):1354-.
    9. Matin Ahooghalandari & Mehdi Khiadani & Mina Esmi Jahromi, 2016. "Developing Equations for Estimating Reference Evapotranspiration in Australia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3815-3828, September.
    10. Yassin, Mohamed A. & Alazba, A.A. & Mattar, Mohamed A., 2016. "Artificial neural networks versus gene expression programming for estimating reference evapotranspiration in arid climate," Agricultural Water Management, Elsevier, vol. 163(C), pages 110-124.
    11. Yang, Yang & Luo, Yufeng & Wu, Conglin & Zheng, Hezhen & Zhang, Lei & Cui, Yuanlai & Sun, Ningning & Wang, Li, 2019. "Evaluation of six equations for daily reference evapotranspiration estimating using public weather forecast message for different climate regions across China," Agricultural Water Management, Elsevier, vol. 222(C), pages 386-399.
    12. Yamaç, Sevim Seda & Şeker, Cevdet & Negiş, Hamza, 2020. "Evaluation of machine learning methods to predict soil moisture constants with different combinations of soil input data for calcareous soils in a semi arid area," Agricultural Water Management, Elsevier, vol. 234(C).
    13. Hossein Tabari, 2010. "Evaluation of Reference Crop Evapotranspiration Equations in Various Climates," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2311-2337, August.
    14. Shih-Lun Fang & Yi-Shan Lin & Sheng-Chih Chang & Yi-Lung Chang & Bing-Yun Tsai & Bo-Jein Kuo, 2024. "Using Artificial Intelligence Algorithms to Estimate and Short-Term Forecast the Daily Reference Evapotranspiration with Limited Meteorological Variables," Agriculture, MDPI, vol. 14(4), pages 1-20, March.
    15. Mattar, Mohamed A., 2018. "Using gene expression programming in monthly reference evapotranspiration modeling: A case study in Egypt," Agricultural Water Management, Elsevier, vol. 198(C), pages 28-38.
    16. Roy, Dilip Kumar & Lal, Alvin & Sarker, Khokan Kumer & Saha, Kowshik Kumar & Datta, Bithin, 2021. "Optimization algorithms as training approaches for prediction of reference evapotranspiration using adaptive neuro fuzzy inference system," Agricultural Water Management, Elsevier, vol. 255(C).
    17. Bellido-Jiménez, Juan Antonio & Estévez, Javier & García-Marín, Amanda Penélope, 2021. "New machine learning approaches to improve reference evapotranspiration estimates using intra-daily temperature-based variables in a semi-arid region of Spain," Agricultural Water Management, Elsevier, vol. 245(C).
    18. Shih-Lun Fang & Ting-Jung Chang & Yuan-Kai Tu & Han-Wei Chen & Min-Hwi Yao & Bo-Jein Kuo, 2022. "Plant-Response-Based Control Strategy for Irrigation and Environmental Controls for Greenhouse Tomato Seedling Cultivation," Agriculture, MDPI, vol. 12(5), pages 1-17, April.
    19. Cruz-Blanco, M. & Lorite, I.J. & Santos, C., 2014. "An innovative remote sensing based reference evapotranspiration method to support irrigation water management under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 131(C), pages 135-145.
    20. Traore, Seydou & Wang, Yu-Min & Kerh, Tienfuan, 2010. "Artificial neural network for modeling reference evapotranspiration complex process in Sudano-Sahelian zone," Agricultural Water Management, Elsevier, vol. 97(5), pages 707-714, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:97:y:2010:i:7:p:939-955. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.