IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v273y2022ics037837742200436x.html
   My bibliography  Save this article

Estimation of daily apple tree transpiration in the Loess Plateau region of China using deep learning models

Author

Listed:
  • Xing, Liwen
  • Cui, Ningbo
  • Liu, Chunwei
  • Zhao, Lu
  • Guo, Li
  • Du, Taisheng
  • Zhan, Cun
  • Wu, Zongjun
  • Wen, Shenglin
  • Jiang, Shouzheng

Abstract

Quantitatively characterizing and accurately predicting plant transpiration are of great significance, but directly measuring transpiration is impractical, time-consuming, and labor-intensive. This study compared the transpiration estimation performance of multiple linear regression (MLR), modified Jarvis–Stewart (MJS), and Shuttleworth–Wallace (S-W) with deep belief network (DBN), long short-term memory recurrent neural network (LSTM-RNN), and LSTM-RNN improved with multiple restricted Boltzmann machines (R-L-RNN) using 31 input combinations comprising complete subsets of Vapor pressure deficit (VPD), Net solar radiation (Rn), Average air temperature (Ta), Soil water content (SWC), and Leaf area index (LAI) observations collected at Wuwei, Changwu and Taigu stations on the Loess Plateau in China. The results showed that R-L-RNN obtained the most accurate estimations in the partial canopy stage, dense canopy stage, and whole growth stage, compared to MLR, MJS, S-W, DBN, and LSTM-RNN. The accuracy of the deep learning models (DNN) increased exponentially as the number of input variables increased, and the importance of the input variables followed the orders of: LAI > VPD > Rn > Ta > SWC in the partial and whole canopy stage, and VPD > Rn > Ta > LAI > SWC in the dense canopy stage. The apple tree transpiration models were more accurate in the partial and dense canopy stages than the whole growth stage. The coefficient of determination and Nash-Sutcliffe efficiency coefficient for the R-L-RNN model increased by 8.1–13.1% and 11.2–25.4% in the partial canopy stage, respectively, and by 2.6–6.9% and 14.7–20.1% in the dense canopy stage, whereas the relative root mean square error decreased by 8.7–28.6% and 17.3–38.2%. Overall, R-L-RNN is the most recommended model for estimating the apple tree transpiration, because it is such a simple method that agricultural water managers can easily determine the water consumption of apple trees using limited accessible observational data.

Suggested Citation

  • Xing, Liwen & Cui, Ningbo & Liu, Chunwei & Zhao, Lu & Guo, Li & Du, Taisheng & Zhan, Cun & Wu, Zongjun & Wen, Shenglin & Jiang, Shouzheng, 2022. "Estimation of daily apple tree transpiration in the Loess Plateau region of China using deep learning models," Agricultural Water Management, Elsevier, vol. 273(C).
  • Handle: RePEc:eee:agiwat:v:273:y:2022:i:c:s037837742200436x
    DOI: 10.1016/j.agwat.2022.107889
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837742200436X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107889?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Granata, Francesco & Di Nunno, Fabio, 2021. "Forecasting evapotranspiration in different climates using ensembles of recurrent neural networks," Agricultural Water Management, Elsevier, vol. 255(C).
    2. Zheng, Jing & Fan, Junliang & Zhang, Fucang & Wu, Lifeng & Zou, Yufeng & Zhuang, Qianlai, 2021. "Estimation of rainfed maize transpiration under various mulching methods using modified Jarvis-Stewart model and hybrid support vector machine model with whale optimization algorithm," Agricultural Water Management, Elsevier, vol. 249(C).
    3. Li, Xiaojie & Kang, Shaozhong & Li, Fusheng & Jiang, Xuelian & Tong, Ling & Ding, Risheng & Li, Sien & Du, Taisheng, 2016. "Applying segmented Jarvis canopy resistance into Penman-Monteith model improves the accuracy of estimated evapotranspiration in maize for seed production with film-mulching in arid area," Agricultural Water Management, Elsevier, vol. 178(C), pages 314-324.
    4. Liu, Chunwei & Du, Taisheng & Li, Fusheng & Kang, Shaozhong & Li, Sien & Tong, Ling, 2012. "Trunk sap flow characteristics during two growth stages of apple tree and its relationships with affecting factors in an arid region of northwest China," Agricultural Water Management, Elsevier, vol. 104(C), pages 193-202.
    5. Liu, Yujie & Luo, Yi, 2010. "A consolidated evaluation of the FAO-56 dual crop coefficient approach using the lysimeter data in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(1), pages 31-40, January.
    6. Feng, Yu & Cui, Ningbo & Gong, Daozhi & Zhang, Qingwen & Zhao, Lu, 2017. "Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modelling," Agricultural Water Management, Elsevier, vol. 193(C), pages 163-173.
    7. Feng, Yu & Jia, Yue & Cui, Ningbo & Zhao, Lu & Li, Chen & Gong, Daozhi, 2017. "Calibration of Hargreaves model for reference evapotranspiration estimation in Sichuan basin of southwest China," Agricultural Water Management, Elsevier, vol. 181(C), pages 1-9.
    8. Chen, Dianyu & Hsu, Kuolin & Duan, Xingwu & Wang, Youke & Wei, Xinguang & Muhammad, Saifullah, 2020. "Bayesian analysis of jujube canopy transpiration models: Does embedding the key environmental factor in Jarvis canopy resistance sub-model always associate with improving transpiration modeling?," Agricultural Water Management, Elsevier, vol. 234(C).
    9. Fan, Junliang & Zheng, Jing & Wu, Lifeng & Zhang, Fucang, 2021. "Estimation of daily maize transpiration using support vector machines, extreme gradient boosting, artificial and deep neural networks models," Agricultural Water Management, Elsevier, vol. 245(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xing, Liwen & Cui, Ningbo & Liu, Chunwei & Guo, Li & Zhao, Long & Wu, Zongjun & Jiang, Xuelian & Wen, Shenglin & Zhao, Lu & Gong, Daozhi, 2024. "Estimating daily kiwifruit evapotranspiration under regulated deficit irrigation strategy using optimized surface resistance based model," Agricultural Water Management, Elsevier, vol. 295(C).
    2. Dong, Juan & Zhu, Yuanjun & Cui, Ningbo & Jia, Xiaoxu & Guo, Li & Qiu, Rangjian & Shao, Ming’an, 2024. "Estimating crop evapotranspiration of wheat-maize rotation system using hybrid convolutional bidirectional Long Short-Term Memory network with grey wolf algorithm in Chinese Loess Plateau region," Agricultural Water Management, Elsevier, vol. 301(C).
    3. Dong, Juan & Xing, Liwen & Cui, Ningbo & Zhao, Lu & Guo, Li & Wang, Zhihui & Du, Taisheng & Tan, Mingdong & Gong, Daozhi, 2024. "Estimating reference crop evapotranspiration using improved convolutional bidirectional long short-term memory network by multi-head attention mechanism in the four climatic zones of China," Agricultural Water Management, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xing, Liwen & Zhao, Lu & Cui, Ningbo & Liu, Chunwei & Guo, Li & Du, Taisheng & Wu, Zongjun & Gong, Daozhi & Jiang, Shouzheng, 2023. "Apple tree transpiration estimated using the Penman-Monteith model integrated with optimized jarvis model," Agricultural Water Management, Elsevier, vol. 276(C).
    2. Yan, Shicheng & Wu, Lifeng & Fan, Junliang & Zhang, Fucang & Zou, Yufeng & Wu, You, 2021. "A novel hybrid WOA-XGB model for estimating daily reference evapotranspiration using local and external meteorological data: Applications in arid and humid regions of China," Agricultural Water Management, Elsevier, vol. 244(C).
    3. Zheng, Jing & Fan, Junliang & Zhou, Minghua & Zhang, Fucang & Liao, Zhenqi & Lai, Zhenlin & Yan, Shicheng & Guo, Jinjin & Li, Zhijun & Xiang, Youzhen, 2022. "Ridge-furrow plastic film mulching enhances grain yield and yield stability of rainfed maize by improving resources capture and use efficiency in a semi-humid drought-prone region," Agricultural Water Management, Elsevier, vol. 269(C).
    4. Feng, Yu & Hao, Weiping & Li, Haoru & Cui, Ningbo & Gong, Daozhi & Gao, Lili, 2020. "Machine learning models to quantify and map daily global solar radiation and photovoltaic power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    5. Chen, Dianyu & Hu, Xiaotao & Duan, Xingwu & Yang, Daxin & Wang, Youke & Wang, Xing & Saifullah, Muhammad, 2024. "Improving canopy transpiration model performance by considering concurrent hot and dry conditions," Agricultural Systems, Elsevier, vol. 217(C).
    6. Wu, Lifeng & Peng, Youwen & Fan, Junliang & Wang, Yicheng & Huang, Guomin, 2021. "A novel kernel extreme learning machine model coupled with K-means clustering and firefly algorithm for estimating monthly reference evapotranspiration in parallel computation," Agricultural Water Management, Elsevier, vol. 245(C).
    7. Malik, Anurag & Jamei, Mehdi & Ali, Mumtaz & Prasad, Ramendra & Karbasi, Masoud & Yaseen, Zaher Mundher, 2022. "Multi-step daily forecasting of reference evapotranspiration for different climates of India: A modern multivariate complementary technique reinforced with ridge regression feature selection," Agricultural Water Management, Elsevier, vol. 272(C).
    8. Jiang, Shouzheng & Liang, Chuan & Cui, Ningbo & Zhao, Lu & Du, Taisheng & Hu, Xiaotao & Feng, Yu & Guan, Jing & Feng, Yi, 2019. "Impacts of climatic variables on reference evapotranspiration during growing season in Southwest China," Agricultural Water Management, Elsevier, vol. 216(C), pages 365-378.
    9. Feng, Yu & Cui, Ningbo & Du, Taisheng & Gong, Daozhi & Hu, Xiaotao & Zhao, Lu, 2017. "Response of sap flux and evapotranspiration to deficit irrigation of greenhouse pear-jujube trees in semi-arid northwest China," Agricultural Water Management, Elsevier, vol. 194(C), pages 1-12.
    10. Wang, Di & Wang, Li, 2017. "Dynamics of evapotranspiration partitioning for apple trees of different ages in a semiarid region of northwest China," Agricultural Water Management, Elsevier, vol. 191(C), pages 1-15.
    11. Ali Mokhtar & Nadhir Al-Ansari & Wessam El-Ssawy & Renata Graf & Pouya Aghelpour & Hongming He & Salma M. Hafez & Mohamed Abuarab, 2023. "Prediction of Irrigation Water Requirements for Green Beans-Based Machine Learning Algorithm Models in Arid Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1557-1580, March.
    12. Roy, Dilip Kumar & Lal, Alvin & Sarker, Khokan Kumer & Saha, Kowshik Kumar & Datta, Bithin, 2021. "Optimization algorithms as training approaches for prediction of reference evapotranspiration using adaptive neuro fuzzy inference system," Agricultural Water Management, Elsevier, vol. 255(C).
    13. Zheng, Jing & Fan, Junliang & Zhang, Fucang & Wu, Lifeng & Zou, Yufeng & Zhuang, Qianlai, 2021. "Estimation of rainfed maize transpiration under various mulching methods using modified Jarvis-Stewart model and hybrid support vector machine model with whale optimization algorithm," Agricultural Water Management, Elsevier, vol. 249(C).
    14. Chia, Min Yan & Huang, Yuk Feng & Koo, Chai Hoon, 2022. "Resolving data-hungry nature of machine learning reference evapotranspiration estimating models using inter-model ensembles with various data management schemes," Agricultural Water Management, Elsevier, vol. 261(C).
    15. Dong, Juan & Xing, Liwen & Cui, Ningbo & Zhao, Lu & Guo, Li & Wang, Zhihui & Du, Taisheng & Tan, Mingdong & Gong, Daozhi, 2024. "Estimating reference crop evapotranspiration using improved convolutional bidirectional long short-term memory network by multi-head attention mechanism in the four climatic zones of China," Agricultural Water Management, Elsevier, vol. 292(C).
    16. Jiang, Shouzheng & Zhao, Lu & Liang, Chuan & Hu, Xiaotao & Yaosheng, Wang & Gong, Daozhi & Zheng, Shunsheng & Huang, Yaowei & He, QingYan & Cui, Ningbo, 2022. "Leaf- and ecosystem-scale water use efficiency and their controlling factors of a kiwifruit orchard in the humid region of Southwest China," Agricultural Water Management, Elsevier, vol. 260(C).
    17. Lei, Guoqing & Zeng, Wenzhi & Yu, Jin & Huang, Jiesheng, 2023. "A comparison of physical-based and machine learning modeling for soil salt dynamics in crop fields," Agricultural Water Management, Elsevier, vol. 277(C).
    18. Xing, Liwen & Cui, Ningbo & Liu, Chunwei & Guo, Li & Zhao, Long & Wu, Zongjun & Jiang, Xuelian & Wen, Shenglin & Zhao, Lu & Gong, Daozhi, 2024. "Estimating daily kiwifruit evapotranspiration under regulated deficit irrigation strategy using optimized surface resistance based model," Agricultural Water Management, Elsevier, vol. 295(C).
    19. Feng, Yu & Gong, Daozhi & Mei, Xurong & Hao, Weiping & Tang, Dahua & Cui, Ningbo, 2017. "Energy balance and partitioning in partial plastic mulched and non-mulched maize fields on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 191(C), pages 193-206.
    20. Tao, Hai & Diop, Lamine & Bodian, Ansoumana & Djaman, Koffi & Ndiaye, Papa Malick & Yaseen, Zaher Mundher, 2018. "Reference evapotranspiration prediction using hybridized fuzzy model with firefly algorithm: Regional case study in Burkina Faso," Agricultural Water Management, Elsevier, vol. 208(C), pages 140-151.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:273:y:2022:i:c:s037837742200436x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.