IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v264y2022ics0378377422000774.html
   My bibliography  Save this article

Estimation of soil moisture content under high maize canopy coverage from UAV multimodal data and machine learning

Author

Listed:
  • Cheng, Minghan
  • Jiao, Xiyun
  • Liu, Yadong
  • Shao, Mingchao
  • Yu, Xun
  • Bai, Yi
  • Wang, Zixu
  • Wang, Siyu
  • Tuohuti, Nuremanguli
  • Liu, Shuaibing
  • Shi, Lei
  • Yin, Dameng
  • Huang, Xiao
  • Nie, Chenwei
  • Jin, Xiuliang

Abstract

An accurate in-field estimate of soil moisture content (SMC) is critical for precision irrigation management. Current ground methods to measure SMC were limited by the disadvantages of small-scale monitoring and high cost. The development of unmanned aerial vehicle (UAV) platforms now provides a cost-effective means for measuring SMC on a large scale. However, previous studies have considered only single-sensor estimates of SMC, so the combination of multiple sensors has yet to be thoroughly discussed. Additionally, the way in which soil depth, canopy coverage, and crop cultivars affect the SMC-estimation accuracy remains unclear. Therefore, the objectives of this study were to (1) evaluate the SMC-estimation accuracy provided by multimodal data fusion and four machine learning algorithms: partial least squares regression, K nearest neighbor, random forest regression (RFR), and backpropagation neural network (BPNN); (2) discuss the accuracy of the remote-sensing approach for estimating SMC at different soil depths, and (3) explore how canopy coverage and crop cultivars affect the accuracy of SMC estimation. The following results were obtained: (1) Data from multispectral sensors provided the most accurate SMC estimates regardless of which of the four machine learning algorithms was used. (2) Multimodal data fusion improved the SMC estimation accuracy, especially when combining multispectral and thermal data. (3) The RFR algorithm provided more accurate SMC estimates than the other three algorithms, with the highest accuracy obtained by combining data from RGB, multispectral, and thermal sensors with an R2 = 0.78 (0.78) and a relative root-mean-square error of 11.2% (9.6%) for 10-cm-deep (20-cm-deep) soil. (4) UAV-based SMC-estimation methods provided similar, stable performance for SMC estimates at various depths and even yielded smaller relative error for deeper estimates (20 cm). (5) The RFR and BPNN machine learning algorithms both provided relatively accurate SMC estimates for modest canopy coverage (0.2–0.4) but relatively poor estimates for higher (>0.4) or lower (<0.2) canopy coverage. (6) The SMC-estimation accuracy for different maize cultivars (JNK728 and ZD958) did not differ significantly (P < 0.01). These results indicate that UAV-based multimodal data fusion combined with machine learning algorithms can provide relatively accurate and repeatable SMC estimates. This approach can thus be used to monitor SMC and design precision irrigation systems.

Suggested Citation

  • Cheng, Minghan & Jiao, Xiyun & Liu, Yadong & Shao, Mingchao & Yu, Xun & Bai, Yi & Wang, Zixu & Wang, Siyu & Tuohuti, Nuremanguli & Liu, Shuaibing & Shi, Lei & Yin, Dameng & Huang, Xiao & Nie, Chenwei , 2022. "Estimation of soil moisture content under high maize canopy coverage from UAV multimodal data and machine learning," Agricultural Water Management, Elsevier, vol. 264(C).
  • Handle: RePEc:eee:agiwat:v:264:y:2022:i:c:s0378377422000774
    DOI: 10.1016/j.agwat.2022.107530
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422000774
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107530?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cucci, Giovanna & Lacolla, Giovanni & Boari, Francesca & Mastro, Mario Alberto & Cantore, Vito, 2019. "Effect of water salinity and irrigation regime on maize (Zea mays L.) cultivated on clay loam soil and irrigated by furrow in Southern Italy," Agricultural Water Management, Elsevier, vol. 222(C), pages 118-124.
    2. Gago, J. & Douthe, C. & Coopman, R.E. & Gallego, P.P. & Ribas-Carbo, M. & Flexas, J. & Escalona, J. & Medrano, H., 2015. "UAVs challenge to assess water stress for sustainable agriculture," Agricultural Water Management, Elsevier, vol. 153(C), pages 9-19.
    3. Krishna, Gopal & Sahoo, Rabi N. & Singh, Prafull & Bajpai, Vaishangi & Patra, Himesh & Kumar, Sudhir & Dandapani, Raju & Gupta, Vinod K. & Viswanathan, C. & Ahmad, Tauqueer & Sahoo, Prachi M., 2019. "Comparison of various modelling approaches for water deficit stress monitoring in rice crop through hyperspectral remote sensing," Agricultural Water Management, Elsevier, vol. 213(C), pages 231-244.
    4. Elsayed, Salah & Elhoweity, Mohamed & Ibrahim, Hazem H. & Dewir, Yaser Hassan & Migdadi, Hussein M. & Schmidhalter, Urs, 2017. "Thermal imaging and passive reflectance sensing to estimate the water status and grain yield of wheat under different irrigation regimes," Agricultural Water Management, Elsevier, vol. 189(C), pages 98-110.
    5. Cheng, Minghan & Li, Binbin & Jiao, Xiyun & Huang, Xiao & Fan, Haiyan & Lin, Rencai & Liu, Kaihua, 2022. "Using multimodal remote sensing data to estimate regional-scale soil moisture content: A case study of Beijing, China," Agricultural Water Management, Elsevier, vol. 260(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haidi Qi & Dinghai Zhang & Zhishan Zhang & Youyi Zhao & Zhanhong Shi, 2024. "Influence of Soil Moisture in Semi-Fixed Sand Dunes of the Tengger Desert, China, Based on PLS-SEM and SHAP Models," Sustainability, MDPI, vol. 16(16), pages 1-22, August.
    2. Wenju Zhao & Fangfang Ma & Haiying Yu & Zhaozhao Li, 2023. "Inversion Model of Salt Content in Alfalfa-Covered Soil Based on a Combination of UAV Spectral and Texture Information," Agriculture, MDPI, vol. 13(8), pages 1-16, August.
    3. Meng Luo & Shengwei Zhang & Lei Huang & Zhiqiang Liu & Lin Yang & Ruishen Li & Xi Lin, 2022. "Temporal and Spatial Changes of Ecological Environment Quality Based on RSEI: A Case Study in Ulan Mulun River Basin, China," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    4. Deng, Juntao & Pan, Shijia & Zhou, Mingu & Gao, Wen & Yan, Yuncai & Niu, Zijie & Han, Wenting, 2023. "Optimum sampling window size and vegetation index selection for low-altitude multispectral estimation of root soil moisture content for Xuxiang Kiwifruit," Agricultural Water Management, Elsevier, vol. 282(C).
    5. Cheng, Minghan & Sun, Chengming & Nie, Chenwei & Liu, Shuaibing & Yu, Xun & Bai, Yi & Liu, Yadong & Meng, Lin & Jia, Xiao & Liu, Yuan & Zhou, Lili & Nan, Fei & Cui, Tengyu & Jin, Xiuliang, 2023. "Evaluation of UAV-based drought indices for crop water conditions monitoring: A case study of summer maize," Agricultural Water Management, Elsevier, vol. 287(C).
    6. Wang, Jingjing & Lou, Yu & Wang, Wentao & Liu, Suyi & Zhang, Haohui & Hui, Xin & Wang, Yunling & Yan, Haijun & Maes, Wouter H., 2024. "A robust model for diagnosing water stress of winter wheat by combining UAV multispectral and thermal remote sensing," Agricultural Water Management, Elsevier, vol. 291(C).
    7. Wenju Zhao & Zhaozhao Li & Haolin Li & Xing Li & Pengtao Yang, 2024. "Soil Salinity Prediction in an Arid Area Based on Long Time-Series Multispectral Imaging," Agriculture, MDPI, vol. 14(9), pages 1-18, September.
    8. Romeu Gerardo & Isabel P. de Lima, 2023. "Applying RGB-Based Vegetation Indices Obtained from UAS Imagery for Monitoring the Rice Crop at the Field Scale: A Case Study in Portugal," Agriculture, MDPI, vol. 13(10), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Yinshan & Jiang, Jie & Zhang, Xiufeng & Zhang, Jiayi & Cao, Qiang & Tian, Yongchao & Zhu, Yan & Cao, Weixing & Liu, Xiaojun, 2023. "Combining machine learning algorithm and multi-temporal temperature indices to estimate the water status of rice," Agricultural Water Management, Elsevier, vol. 289(C).
    2. Cheng, Minghan & Sun, Chengming & Nie, Chenwei & Liu, Shuaibing & Yu, Xun & Bai, Yi & Liu, Yadong & Meng, Lin & Jia, Xiao & Liu, Yuan & Zhou, Lili & Nan, Fei & Cui, Tengyu & Jin, Xiuliang, 2023. "Evaluation of UAV-based drought indices for crop water conditions monitoring: A case study of summer maize," Agricultural Water Management, Elsevier, vol. 287(C).
    3. Nadia Belmonte & Carlo Luetto & Stefano Staulo & Paola Rizzi & Marcello Baricco, 2017. "Case Studies of Energy Storage with Fuel Cells and Batteries for Stationary and Mobile Applications," Challenges, MDPI, vol. 8(1), pages 1-15, March.
    4. Noriza Khalid & Ákos Tarnawa & István Balla & Suhana Omar & Rosnani Abd Ghani & Márton Jolánkai & Zoltán Kende, 2023. "Combination Effect of Temperature and Salinity Stress on Germination of Different Maize ( Zea mays L.) Varieties," Agriculture, MDPI, vol. 13(10), pages 1-18, October.
    5. Liu, Yi & Zeng, Wenzhi & Ao, Chang & Lei, Guoqing & Wu, Jingwei & Huang, Jiesheng & Gaiser, Thomas & Srivastava, Amit Kumar, 2022. "Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth," Agricultural Water Management, Elsevier, vol. 270(C).
    6. Deng, Juntao & Pan, Shijia & Zhou, Mingu & Gao, Wen & Yan, Yuncai & Niu, Zijie & Han, Wenting, 2023. "Optimum sampling window size and vegetation index selection for low-altitude multispectral estimation of root soil moisture content for Xuxiang Kiwifruit," Agricultural Water Management, Elsevier, vol. 282(C).
    7. Padilla-Díaz, C.M. & Rodriguez-Dominguez, C.M. & Hernandez-Santana, V. & Perez-Martin, A. & Fernandes, R.D.M. & Montero, A. & García, J.M. & Fernández, J.E., 2018. "Water status, gas exchange and crop performance in a super high density olive orchard under deficit irrigation scheduled from leaf turgor measurements," Agricultural Water Management, Elsevier, vol. 202(C), pages 241-252.
    8. Alfredo Valdes Ramos & Elsa N. Aguilera Gonzalez & Gloria Tobón Echeverri & Luis Samaniego Moreno & Lourdes Díaz Jiménez & Salvador Carlos Hernández, 2019. "Potential Uses of Treated Municipal Wastewater in a Semiarid Region of Mexico," Sustainability, MDPI, vol. 11(8), pages 1-23, April.
    9. Tailin Li & Massimiliano Schiavo & David Zumr, . "Seasonal variations of vegetative indices and their correlation with evapotranspiration and soil water storage in a small agricultural catchment," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 0.
    10. Adel H. Elmetwalli & Yasser S. A. Mazrou & Andrew N. Tyler & Peter D. Hunter & Osama Elsherbiny & Zaher Mundher Yaseen & Salah Elsayed, 2022. "Assessing the Efficiency of Remote Sensing and Machine Learning Algorithms to Quantify Wheat Characteristics in the Nile Delta Region of Egypt," Agriculture, MDPI, vol. 12(3), pages 1-21, February.
    11. Zhang, Yuehong & Li, Xianyue & Šimůnek, Jirí & Shi, Haibin & Chen, Ning & Hu, Qi & Tian, Tong, 2021. "Evaluating soil salt dynamics in a field drip-irrigated with brackish water and leached with freshwater during different crop growth stages," Agricultural Water Management, Elsevier, vol. 244(C).
    12. Luxon Nhamo & James Magidi & Adolph Nyamugama & Alistair D. Clulow & Mbulisi Sibanda & Vimbayi G. P. Chimonyo & Tafadzwanashe Mabhaudhi, 2020. "Prospects of Improving Agricultural and Water Productivity through Unmanned Aerial Vehicles," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    13. Hwanjo Chung & Seunghwan Wi & Byoung-Kwan Cho & Hoonsoo Lee, 2024. "Classification of Garlic ( Allium sativum L.) Crops by Fertilizer Differences Using Ground-Based Hyperspectral Imaging System," Agriculture, MDPI, vol. 14(8), pages 1-20, July.
    14. Fullana-Pericàs, Mateu & Conesa, Miquel À. & Gago, Jorge & Ribas-Carbó, Miquel & Galmés, Jeroni, 2022. "High-throughput phenotyping of a large tomato collection under water deficit: Combining UAVs’ remote sensing with conventional leaf-level physiologic and agronomic measurements," Agricultural Water Management, Elsevier, vol. 260(C).
    15. Magali J. López-Calderón & Juan Estrada-Ávalos & Víctor M. Rodríguez-Moreno & Jorge E. Mauricio-Ruvalcaba & Aldo R. Martínez-Sifuentes & Gerardo Delgado-Ramírez & Enrique Miguel-Valle, 2020. "Estimation of Total Nitrogen Content in Forage Maize ( Zea mays L.) Using Spectral Indices: Analysis by Random Forest," Agriculture, MDPI, vol. 10(10), pages 1-15, October.
    16. Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).
    17. Salah Elsayed & Mohamed Gad & Mohamed Farouk & Ali H. Saleh & Hend Hussein & Adel H. Elmetwalli & Osama Elsherbiny & Farahat S. Moghanm & Moustapha E. Moustapha & Mostafa A. Taher & Ebrahem M. Eid & M, 2021. "Using Optimized Two and Three-Band Spectral Indices and Multivariate Models to Assess Some Water Quality Indicators of Qaroun Lake in Egypt," Sustainability, MDPI, vol. 13(18), pages 1-23, September.
    18. Romero-Trigueros, Cristina & Nortes, Pedro A. & Alarcón, Juan J. & Hunink, Johannes E. & Parra, Margarita & Contreras, Sergio & Droogers, Peter & Nicolás, Emilio, 2017. "Effects of saline reclaimed waters and deficit irrigation on Citrus physiology assessed by UAV remote sensing," Agricultural Water Management, Elsevier, vol. 183(C), pages 60-69.
    19. Belmonte, N. & Staulo, S. & Fiorot, S. & Luetto, C. & Rizzi, P. & Baricco, M., 2018. "Fuel cell powered octocopter for inspection of mobile cranes: Design, cost analysis and environmental impacts," Applied Energy, Elsevier, vol. 215(C), pages 556-565.
    20. Longo-Minnolo, G. & Vanella, D. & Consoli, S. & Intrigliolo, D.S. & Ramírez-Cuesta, J.M., 2020. "Integrating forecast meteorological data into the ArcDualKc model for estimating spatially distributed evapotranspiration rates of a citrus orchard," Agricultural Water Management, Elsevier, vol. 231(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:264:y:2022:i:c:s0378377422000774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.