IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i12p2189-d1544216.html
   My bibliography  Save this article

A Framework for High-Spatiotemporal-Resolution Soil Moisture Retrieval in China Using Multi-Source Remote Sensing Data

Author

Listed:
  • Zhuangzhuang Feng

    (State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Xingming Zheng

    (State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
    Changchun Jingyuetan Remote Sensing Experiment Station, Chinese Academy of Sciences, Changchun 130102, China)

  • Xiaofeng Li

    (State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
    Changchun Jingyuetan Remote Sensing Experiment Station, Chinese Academy of Sciences, Changchun 130102, China)

  • Chunmei Wang

    (Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China)

  • Jinfeng Song

    (State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Lei Li

    (State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China)

  • Tianhao Guo

    (State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Jia Zheng

    (State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

High-spatiotemporal-resolution and accurate soil moisture (SM) data are crucial for investigating climate, hydrology, and agriculture. Existing SM products do not yet meet the demands for high spatiotemporal resolution. The objective is to develop and evaluate a retrieval framework to derive SM estimates with high spatial (100 m) and temporal (<3 days) resolution that can be used on a national scale in China. Therefore, this study integrates multi-source data, including optical remote sensing (RS) data from Sentinel-2 and Landsat-7/8/9, synthetic aperture radar (SAR) data from Sentinel-1, and auxiliary data. Four machine learning and deep learning algorithms are applied, including Random Forest Regression (RFR), Extreme Gradient Boosting (XGBoost), Long Short-Term Memory (LSTM) networks, and Ensemble Learning (EL). The integrated framework (IF) considers three feature scenarios (SC1: optical RS + auxiliary data, SC2: SAR + auxiliary data, SC3: optical RS + SAR + auxiliary data), encompassing a total of 33 features. The results are as follows: (1) The correlation coefficients (r) between auxiliary data (such as sand fraction, r = −0.48; silt fraction, r = 0.47; and evapotranspiration, r = −0.42), SAR features (such as the backscatter coefficients for VV-pol ( σ v v 0 ), r = 0.47), and optical RS features (such as Shortwave Infrared Band 2 (SWIR2) reflectance data from Sentinel-2 and Landsat-7/8/9, r = −0.39) with observed SM are significant. This indicates that multi-source data can provide complementary information for SM monitoring. (2) Compared to XGBoost and LSTM, RFR and EL demonstrate superior overall performance and are the preferred models for SM prediction. Their R 2 for the training and test sets exceed 0.969 and 0.743, respectively, and their ubRMSE are below 0.022 and 0.063 m 3 /m 3 , respectively. (3) The SM prediction accuracy is highest for the scenario of optical + SAR + auxiliary data, followed by SAR + auxiliary data, and finally optical + auxiliary data. (4) With an increasing Normalized Difference Vegetation Index (NDVI) and SM values, the trained models exhibit a general decrease in prediction performance and accuracy. (5) In 2021 and 2022, without considering cloud cover, the IF theoretically achieved an SM revisit time of 1–3 days across 95.01% and 96.53% of China’s area, respectively. However, SC1 was able to achieve a revisit time of 1–3 days over 60.73% of China’s area in 2021 and 69.36% in 2022, while the area covered by SC2 and SC3 at this revisit time accounted for less than 1% of China’s total area. This study validates the effectiveness of combining multi-source RS data with auxiliary data in large-scale SM monitoring and provides new methods for improving SM retrieval accuracy and spatiotemporal coverage.

Suggested Citation

  • Zhuangzhuang Feng & Xingming Zheng & Xiaofeng Li & Chunmei Wang & Jinfeng Song & Lei Li & Tianhao Guo & Jia Zheng, 2024. "A Framework for High-Spatiotemporal-Resolution Soil Moisture Retrieval in China Using Multi-Source Remote Sensing Data," Land, MDPI, vol. 13(12), pages 1-21, December.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:12:p:2189-:d:1544216
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/12/2189/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/12/2189/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cheng, Minghan & Jiao, Xiyun & Liu, Yadong & Shao, Mingchao & Yu, Xun & Bai, Yi & Wang, Zixu & Wang, Siyu & Tuohuti, Nuremanguli & Liu, Shuaibing & Shi, Lei & Yin, Dameng & Huang, Xiao & Nie, Chenwei , 2022. "Estimation of soil moisture content under high maize canopy coverage from UAV multimodal data and machine learning," Agricultural Water Management, Elsevier, vol. 264(C).
    2. Shilong Piao & Philippe Ciais & Yao Huang & Zehao Shen & Shushi Peng & Junsheng Li & Liping Zhou & Hongyan Liu & Yuecun Ma & Yihui Ding & Pierre Friedlingstein & Chunzhen Liu & Kun Tan & Yongqiang Yu , 2010. "The impacts of climate change on water resources and agriculture in China," Nature, Nature, vol. 467(7311), pages 43-51, September.
    3. Cheng, Minghan & Li, Binbin & Jiao, Xiyun & Huang, Xiao & Fan, Haiyan & Lin, Rencai & Liu, Kaihua, 2022. "Using multimodal remote sensing data to estimate regional-scale soil moisture content: A case study of Beijing, China," Agricultural Water Management, Elsevier, vol. 260(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Minghan & Sun, Chengming & Nie, Chenwei & Liu, Shuaibing & Yu, Xun & Bai, Yi & Liu, Yadong & Meng, Lin & Jia, Xiao & Liu, Yuan & Zhou, Lili & Nan, Fei & Cui, Tengyu & Jin, Xiuliang, 2023. "Evaluation of UAV-based drought indices for crop water conditions monitoring: A case study of summer maize," Agricultural Water Management, Elsevier, vol. 287(C).
    2. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    3. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    4. Bu, Lingduo & Chen, Xinping & Li, Shiqing & Liu, Jianliang & Zhu, Lin & Luo, Shasha & Lee Hill, Robert & Zhao, Ying, 2015. "The effect of adapting cultivars on the water use efficiency of dryland maize (Zea mays L.) in northwestern China," Agricultural Water Management, Elsevier, vol. 148(C), pages 1-9.
    5. Wenfeng Chi & Yuanyuan Zhao & Wenhui Kuang & Tao Pan & Tu Ba & Jinshen Zhao & Liang Jin & Sisi Wang, 2021. "Impact of Cropland Evolution on Soil Wind Erosion in Inner Mongolia of China," Land, MDPI, vol. 10(6), pages 1-16, June.
    6. Xu, Ying & Findlay, Christopher, 2019. "Farmers’ constraints, governmental support and climate change adaptation: Evidence from Guangdong Province, China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), October.
    7. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    8. Yuhong Shuai & Liming Yao, 2021. "Adjustable Robust Optimization for Multi-Period Water Allocation in Droughts Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4043-4065, September.
    9. Zhang, Fengtai & Xiao, Yuedong & Gao, Lei & Ma, Dalai & Su, Ruiqi & Yang, Qing, 2022. "How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs," Agricultural Water Management, Elsevier, vol. 260(C).
    10. Meng Luo & Shengwei Zhang & Lei Huang & Zhiqiang Liu & Lin Yang & Ruishen Li & Xi Lin, 2022. "Temporal and Spatial Changes of Ecological Environment Quality Based on RSEI: A Case Study in Ulan Mulun River Basin, China," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    11. Chen, Qi & Qu, Zhaoming & Ma, Guohua & Wang, Wenjing & Dai, Jiaying & Zhang, Min & Wei, Zhanbo & Liu, Zhiguang, 2022. "Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions," Agricultural Water Management, Elsevier, vol. 263(C).
    12. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    13. Deng, Juntao & Pan, Shijia & Zhou, Mingu & Gao, Wen & Yan, Yuncai & Niu, Zijie & Han, Wenting, 2023. "Optimum sampling window size and vegetation index selection for low-altitude multispectral estimation of root soil moisture content for Xuxiang Kiwifruit," Agricultural Water Management, Elsevier, vol. 282(C).
    14. Zhihai Yang & Amin W. Mugera & Fan Zhang, 2016. "Investigating Yield Variability and Inefficiency in Rice Production: A Case Study in Central China," Sustainability, MDPI, vol. 8(8), pages 1-11, August.
    15. Xiaoguang Chen & Madhu Khanna & Lu Yang, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 256-279, April.
    16. Sicong Wang & Changhai Qin & Yong Zhao & Jing Zhao & Yuping Han, 2023. "The Evolutionary Path of the Center of Gravity for Water Use, the Population, and the Economy, and Their Decomposed Contributions in China from 1965 to 2019," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    17. Minghao Bai & Shenbei Zhou & Ting Tang, 2022. "A Reconstruction of Irrigated Cropland Extent in China from 2000 to 2019 Using the Synergy of Statistics and Satellite-Based Datasets," Land, MDPI, vol. 11(10), pages 1-27, September.
    18. Yang, Wenjie & Li, Yanhang & Jia, Bingli & Liu, Lei & Yuan, Aijing & Liu, Jinshan & Qiu, Weihong, 2024. "Optimized fertilization based on fallow season precipitation and the Nutrient Expert system for dryland wheat reduced environmental risks and increased economic benefits," Agricultural Water Management, Elsevier, vol. 291(C).
    19. Junhao Liu & Zhe Hao & Jianli Ding & Yukun Zhang & Zhiguo Miao & Yu Zheng & Alimira Alimu & Huiling Cheng & Xiang Li, 2024. "Ensemble Machine-Learning-Based Framework for Estimating Surface Soil Moisture Using Sentinel-1/2 Data: A Case Study of an Arid Oasis in China," Land, MDPI, vol. 13(10), pages 1-21, October.
    20. Wang, Guangshuai & Liang, Yueping & Zhang, Qian & Jha, Shiva K. & Gao, Yang & Shen, Xiaojun & Sun, Jingsheng & Duan, Aiwang, 2016. "Mitigated CH4 and N2O emissions and improved irrigation water use efficiency in winter wheat field with surface drip irrigation in the North China Plain," Agricultural Water Management, Elsevier, vol. 163(C), pages 403-407.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:12:p:2189-:d:1544216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.