IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v305y2024ics0378377424004554.html
   My bibliography  Save this article

Experimental and numerical evaluation of soil water and salt dynamics in a corn field with shallow saline groundwater and crop-season drip and autumn post-harvest irrigations

Author

Listed:
  • Guo, Shuhao
  • Li, Xianyue
  • Šimůnek, Jirí
  • Wang, Jun
  • Zhang, Yuehong
  • Wang, Ya'nan
  • Zhen, Zhixin
  • He, Rui

Abstract

In areas with shallow saline groundwater, soil salts inevitably accumulate in the root zone during the growth period due to irrigation and upward movement of salts from the groundwater. In Northern China, autumn irrigation (AIR) with large amounts of water is commonly employed post-harvest to mitigate soil salt stress on crop growth in the subsequent year. Optimizing the total irrigation depth during both crop-growth and non-growth periods is challenging because of the movement of soil salts, which is influenced by their two-dimensional distribution around drippers and the impact of the winter freeze-thaw cycles, significantly affecting water flow and solute transport during winter. In this study, the HYDRUS-1D and HYDRUS-2D models were integrated and calibrated using experimental data collected from 2021 to 2023 in China's Ordos south bank irrigation area. This model integration was conducted to assess soil water and salt dynamics during the non-growth and corn-growth periods under different irrigation strategies: a) AIR with high (AH) and low (AL) irrigation depths, and b) drip irrigation (DIR) with high (DH), medium (DM), and low (DL) irrigation depths. The results indicated that HYDRUS effectively modeled the electrical conductivity of the saturation paste extract (ECe) across different irrigation strategies, yielding an average coefficient of determination (R2) and the root mean square errors (RMSE) of 0.87 and 0.53 dS m−1, respectively. Generally, ECe increased during the growth period with DIR and decreased during the non-growth period with AIR. For the 0–40 cm soil layer, ECe decreased by 5.7 % and 12 % for every 100 mm increase in the AIR and DIR depths, respectively. Compared with the AHDM and AHDL treatments, reducing an AIR depth and increasing a DIR depth resulted in lower ECe in the 0–40 cm layer during the growth period and higher crop yield (CY) and irrigation water productivity (WPI). Specifically, the average ECe in the 0–40 cm layer decreased by 4.8 % during the growth period in the ALDH treatment compared to the AHDM treatment, and CY and WPI increased by 7.2 % and 10.3 %, respectively. Additionally, the irrigation strategy was the most effective in reducing ECe when AIR accounted for 35 % of the total irrigation. This study suggested that combining low AIR and high DIR could enhance water and field productivity.

Suggested Citation

  • Guo, Shuhao & Li, Xianyue & Šimůnek, Jirí & Wang, Jun & Zhang, Yuehong & Wang, Ya'nan & Zhen, Zhixin & He, Rui, 2024. "Experimental and numerical evaluation of soil water and salt dynamics in a corn field with shallow saline groundwater and crop-season drip and autumn post-harvest irrigations," Agricultural Water Management, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:agiwat:v:305:y:2024:i:c:s0378377424004554
    DOI: 10.1016/j.agwat.2024.109119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424004554
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Guanfang & Zhu, Yan & Ye, Ming & Yang, Jinzhong & Qu, Zhongyi & Mao, Wei & Wu, Jingwei, 2019. "Development and application of long-term root zone salt balance model for predicting soil salinity in arid shallow water table area," Agricultural Water Management, Elsevier, vol. 213(C), pages 486-498.
    2. Vahid Gholami & Zabihollah Yousefi & Hosseinali Zabardast Rostami, 2010. "Modeling of Ground Water Salinity on the Caspian Southern Coasts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(7), pages 1415-1424, May.
    3. Liu, Yi & Zeng, Wenzhi & Ao, Chang & Lei, Guoqing & Wu, Jingwei & Huang, Jiesheng & Gaiser, Thomas & Srivastava, Amit Kumar, 2022. "Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth," Agricultural Water Management, Elsevier, vol. 270(C).
    4. Kleijnen, Jack P.C., 2009. "Kriging metamodeling in simulation: A review," European Journal of Operational Research, Elsevier, vol. 192(3), pages 707-716, February.
    5. Cucci, Giovanna & Lacolla, Giovanni & Boari, Francesca & Mastro, Mario Alberto & Cantore, Vito, 2019. "Effect of water salinity and irrigation regime on maize (Zea mays L.) cultivated on clay loam soil and irrigated by furrow in Southern Italy," Agricultural Water Management, Elsevier, vol. 222(C), pages 118-124.
    6. Abd El-Mageed, Taia A. & Semida, Wael M. & Abd El-Wahed, Mohamed H., 2016. "Effect of mulching on plant water status, soil salinity and yield of squash under summer-fall deficit irrigation in salt affected soil," Agricultural Water Management, Elsevier, vol. 173(C), pages 1-12.
    7. Bristow, Keith L. & Šimůnek, Jirka & Helalia, Sarah A. & Siyal, Altaf A., 2020. "Numerical simulations of the effects furrow surface conditions and fertilizer locations have on plant nitrogen and water use in furrow irrigated systems," Agricultural Water Management, Elsevier, vol. 232(C).
    8. Qi, Zhijuan & Feng, Hao & Zhao, Ying & Zhang, Tibin & Yang, Aizheng & Zhang, Zhongxue, 2018. "Spatial distribution and simulation of soil moisture and salinity under mulched drip irrigation combined with tillage in an arid saline irrigation district, northwest China," Agricultural Water Management, Elsevier, vol. 201(C), pages 219-231.
    9. Qian, Yingzhi & Zhu, Yan & Ye, Ming & Huang, Jiesheng & Wu, Jingwei, 2021. "Experiment and numerical simulation for designing layout parameters of subsurface drainage pipes in arid agricultural areas," Agricultural Water Management, Elsevier, vol. 243(C).
    10. Dou, Xu & Shi, Haibin & Li, Ruiping & Miao, Qingfeng & Yan, Jianwen & Tian, Feng & Wang, Bo, 2022. "Simulation and evaluation of soil water and salt transport under controlled subsurface drainage using HYDRUS-2D model," Agricultural Water Management, Elsevier, vol. 273(C).
    11. Gerçek, Sinan & Demirkaya, Mustafa, 2021. "Impact of colored water pillows on yield and water productivity of pepper under greenhouse conditions," Agricultural Water Management, Elsevier, vol. 250(C).
    12. Liu, Zhongyi & Chen, Hang & Huo, Zailin & Wang, Fengxin & Shock, Clinton C., 2016. "Analysis of the contribution of groundwater to evapotranspiration in an arid irrigation district with shallow water table," Agricultural Water Management, Elsevier, vol. 171(C), pages 131-141.
    13. Aein, Reza & Alizadeh, Hosein, 2021. "Integrated hydro-economic modeling for optimal design of development scheme of salinity affected irrigated agriculture in Helleh River Basin," Agricultural Water Management, Elsevier, vol. 243(C).
    14. Wang, Xiangping & Liu, Guangming & Yang, Jingsong & Huang, Guanhua & Yao, Rongjiang, 2017. "Evaluating the effects of irrigation water salinity on water movement, crop yield and water use efficiency by means of a coupled hydrologic/crop growth model," Agricultural Water Management, Elsevier, vol. 185(C), pages 13-26.
    15. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    16. Karandish, Fatemeh & Šimůnek, Jiří, 2018. "An application of the water footprint assessment to optimize production of crops irrigated with saline water: A scenario assessment with HYDRUS," Agricultural Water Management, Elsevier, vol. 208(C), pages 67-82.
    17. Ramos, Tiago B. & Liu, Meihan & Paredes, Paula & Shi, Haibin & Feng, Zhuangzhuang & Lei, Huimin & Pereira, Luis S., 2023. "Salts dynamics in maize irrigation in the Hetao plateau using static water table lysimeters and HYDRUS-1D with focus on the autumn leaching irrigation," Agricultural Water Management, Elsevier, vol. 283(C).
    18. Sezen, S. Metin & Yucel, Seral & Tekin, Servet & Yıldız, Mehmet, 2019. "Determination of optimum irrigation and effect of deficit irrigation strategies on yield and disease rate of peanut irrigated with drip system in Eastern Mediterranean," Agricultural Water Management, Elsevier, vol. 221(C), pages 211-219.
    19. Kresović, Branka & Tapanarova, Angelina & Tomić, Zorica & Životić, Ljubomir & Vujović, Dragan & Sredojević, Zorica & Gajić, Boško, 2016. "Grain yield and water use efficiency of maize as influenced by different irrigation regimes through sprinkler irrigation under temperate climate," Agricultural Water Management, Elsevier, vol. 169(C), pages 34-43.
    20. Zhang, Yuehong & Li, Xianyue & Šimůnek, Jirí & Shi, Haibin & Chen, Ning & Hu, Qi & Tian, Tong, 2021. "Evaluating soil salt dynamics in a field drip-irrigated with brackish water and leached with freshwater during different crop growth stages," Agricultural Water Management, Elsevier, vol. 244(C).
    21. Vogeler, Iris & Thomas, Steve & van der Weerden, Tony, 2019. "Effect of irrigation management on pasture yield and nitrogen losses," Agricultural Water Management, Elsevier, vol. 216(C), pages 60-69.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yi & Hu, Yue & Wei, Chenchen & Zeng, Wenzhi & Huang, Jiesheng & Ao, Chang, 2024. "Synergistic regulation of irrigation and drainage based on crop salt tolerance and leaching threshold," Agricultural Water Management, Elsevier, vol. 292(C).
    2. Li, Yunfeng & Yu, Qihua & Ning, Huifeng & Gao, Yang & Sun, Jingsheng, 2023. "Simulation of soil water, heat, and salt adsorptive transport under film mulched drip irrigation in an arid saline-alkali area using HYDRUS-2D," Agricultural Water Management, Elsevier, vol. 290(C).
    3. Liu, Meihan & Paredes, Paula & Shi, Haibin & Ramos, Tiago B. & Dou, Xu & Dai, Liping & Pereira, Luis S., 2022. "Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc," Agricultural Water Management, Elsevier, vol. 273(C).
    4. Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).
    5. Che, Zheng & Wang, Jun & Li, Jiusheng, 2022. "Modeling strategies to balance salt leaching and nitrogen loss for drip irrigation with saline water in arid regions," Agricultural Water Management, Elsevier, vol. 274(C).
    6. Quan, Hao & Wu, Lihong & Ding, Dianyuan & Yang, Zhenting & Wang, Naijiang & Chen, Guangjie & Li, Cheng & Dong, Qin'ge & Feng, Hao & Zhang, Tibin & Siddique, Kadambot H.M., 2022. "Interaction between soil water and fertilizer utilization on maize under plastic mulching in an arid irrigation region of China," Agricultural Water Management, Elsevier, vol. 265(C).
    7. Ramos, Tiago B. & Liu, Meihan & Paredes, Paula & Shi, Haibin & Feng, Zhuangzhuang & Lei, Huimin & Pereira, Luis S., 2023. "Salts dynamics in maize irrigation in the Hetao plateau using static water table lysimeters and HYDRUS-1D with focus on the autumn leaching irrigation," Agricultural Water Management, Elsevier, vol. 283(C).
    8. Liu, Yi & Zeng, Wenzhi & Ao, Chang & Lei, Guoqing & Wu, Jingwei & Huang, Jiesheng & Gaiser, Thomas & Srivastava, Amit Kumar, 2022. "Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth," Agricultural Water Management, Elsevier, vol. 270(C).
    9. Feng, Genxiang & Zhu, Chengli & Wu, Qingfeng & Wang, Ce & Zhang, Zhanyu & Mwiya, Richwell Mubita & Zhang, Li, 2021. "Evaluating the impacts of saline water irrigation on soil water-salt and summer maize yield in subsurface drainage condition using coupled HYDRUS and EPIC model," Agricultural Water Management, Elsevier, vol. 258(C).
    10. Zhang, Tibin & Zou, Yufeng & Kisekka, Isaya & Biswas, Asim & Cai, Huanjie, 2021. "Comparison of different irrigation methods to synergistically improve maize’s yield, water productivity and economic benefits in an arid irrigation area," Agricultural Water Management, Elsevier, vol. 243(C).
    11. Zhang, Yuehong & Li, Xianyue & Šimůnek, Jirí & Shi, Haibin & Chen, Ning & Hu, Qi & Tian, Tong, 2021. "Evaluating soil salt dynamics in a field drip-irrigated with brackish water and leached with freshwater during different crop growth stages," Agricultural Water Management, Elsevier, vol. 244(C).
    12. Zhao, Tianxing & Zhu, Yan & Ye, Ming & Yang, Jinzhong & Jia, Biao & Mao, Wei & Wu, Jingwei, 2022. "A new approach for estimating spatial-temporal phreatic evapotranspiration at a regional scale using NDVI and water table depth measurements," Agricultural Water Management, Elsevier, vol. 264(C).
    13. Wenquan Liu & Fang Lu & Weitao Han, 2025. "Sustainable Marginal Water Resource Management: A Case Study of Brackish Water Irrigation on the Southern Coast of Laizhou Bay," Sustainability, MDPI, vol. 17(5), pages 1-14, February.
    14. Dou, Xu & Shi, Haibin & Li, Ruiping & Miao, Qingfeng & Yan, Jianwen & Tian, Feng & Wang, Bo, 2022. "Simulation and evaluation of soil water and salt transport under controlled subsurface drainage using HYDRUS-2D model," Agricultural Water Management, Elsevier, vol. 273(C).
    15. Tiago B. Ramos & Meihan Liu & Haibin Shi & Paula Paredes & Luis S. Pereira, 2024. "Leaching Efficiency During Autumn Irrigation in China’s Arid Hetao Plain as Influenced by the Depth of Shallow Saline Groundwater and Irrigation Depth, Using Data from Static Water-Table Lysimeters an," Land, MDPI, vol. 13(11), pages 1-11, October.
    16. Fu, Chong & Xue, Jing & Chen, Junfeng & Cui, Lihong & Wang, Hui, 2024. "Evaluating spatial and temporal variations of soil water, heat, and salt under autumn irrigation in the Hetao Irrigation District based on distributed SHAW model," Agricultural Water Management, Elsevier, vol. 293(C).
    17. Han, Xiaoyu & Kang, Yaohu & Wan, Shuqin & Li, Xiaobin, 2022. "Effect of salinity on oleic sunflower (Helianthus annuus Linn.) under drip irrigation in arid area of Northwest China," Agricultural Water Management, Elsevier, vol. 259(C).
    18. Weiying Feng & Jiayue Gao & Rui Cen & Fang Yang & Zhongqi He & Jin Wu & Qingfeng Miao & Haiqing Liao, 2020. "Effects of Polyacrylamide-Based Super Absorbent Polymer and Corn Straw Biochar on the Arid and Semi-Arid Salinized Soil," Agriculture, MDPI, vol. 10(11), pages 1-17, November.
    19. Devkota, Krishna Prasad & Devkota, Mina & Rezaei, Meisam & Oosterbaan, Roland, 2022. "Managing salinity for sustainable agricultural production in salt-affected soils of irrigated drylands," Agricultural Systems, Elsevier, vol. 198(C).
    20. Liu, Lining & Zuo, Qiang & Shi, Jianchu & Wu, Xun & Wei, Congmin & Sheng, Jiandong & Jiang, Pingan & Chen, Quanjia & Ben-Gal, Alon, 2023. "Balancing economic benefits and environmental repercussions based on smart irrigation by regulating root zone water and salinity dynamics," Agricultural Water Management, Elsevier, vol. 285(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:305:y:2024:i:c:s0378377424004554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.