IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v305y2024ics0378377424004554.html
   My bibliography  Save this article

Experimental and numerical evaluation of soil water and salt dynamics in a corn field with shallow saline groundwater and crop-season drip and autumn post-harvest irrigations

Author

Listed:
  • Guo, Shuhao
  • Li, Xianyue
  • Šimůnek, Jirí
  • Wang, Jun
  • Zhang, Yuehong
  • Wang, Ya'nan
  • Zhen, Zhixin
  • He, Rui

Abstract

In areas with shallow saline groundwater, soil salts inevitably accumulate in the root zone during the growth period due to irrigation and upward movement of salts from the groundwater. In Northern China, autumn irrigation (AIR) with large amounts of water is commonly employed post-harvest to mitigate soil salt stress on crop growth in the subsequent year. Optimizing the total irrigation depth during both crop-growth and non-growth periods is challenging because of the movement of soil salts, which is influenced by their two-dimensional distribution around drippers and the impact of the winter freeze-thaw cycles, significantly affecting water flow and solute transport during winter. In this study, the HYDRUS-1D and HYDRUS-2D models were integrated and calibrated using experimental data collected from 2021 to 2023 in China's Ordos south bank irrigation area. This model integration was conducted to assess soil water and salt dynamics during the non-growth and corn-growth periods under different irrigation strategies: a) AIR with high (AH) and low (AL) irrigation depths, and b) drip irrigation (DIR) with high (DH), medium (DM), and low (DL) irrigation depths. The results indicated that HYDRUS effectively modeled the electrical conductivity of the saturation paste extract (ECe) across different irrigation strategies, yielding an average coefficient of determination (R2) and the root mean square errors (RMSE) of 0.87 and 0.53 dS m−1, respectively. Generally, ECe increased during the growth period with DIR and decreased during the non-growth period with AIR. For the 0–40 cm soil layer, ECe decreased by 5.7 % and 12 % for every 100 mm increase in the AIR and DIR depths, respectively. Compared with the AHDM and AHDL treatments, reducing an AIR depth and increasing a DIR depth resulted in lower ECe in the 0–40 cm layer during the growth period and higher crop yield (CY) and irrigation water productivity (WPI). Specifically, the average ECe in the 0–40 cm layer decreased by 4.8 % during the growth period in the ALDH treatment compared to the AHDM treatment, and CY and WPI increased by 7.2 % and 10.3 %, respectively. Additionally, the irrigation strategy was the most effective in reducing ECe when AIR accounted for 35 % of the total irrigation. This study suggested that combining low AIR and high DIR could enhance water and field productivity.

Suggested Citation

  • Guo, Shuhao & Li, Xianyue & Šimůnek, Jirí & Wang, Jun & Zhang, Yuehong & Wang, Ya'nan & Zhen, Zhixin & He, Rui, 2024. "Experimental and numerical evaluation of soil water and salt dynamics in a corn field with shallow saline groundwater and crop-season drip and autumn post-harvest irrigations," Agricultural Water Management, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:agiwat:v:305:y:2024:i:c:s0378377424004554
    DOI: 10.1016/j.agwat.2024.109119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424004554
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:305:y:2024:i:c:s0378377424004554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.