IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v287y2023ics0378377423003074.html
   My bibliography  Save this article

Evaluation of UAV-based drought indices for crop water conditions monitoring: A case study of summer maize

Author

Listed:
  • Cheng, Minghan
  • Sun, Chengming
  • Nie, Chenwei
  • Liu, Shuaibing
  • Yu, Xun
  • Bai, Yi
  • Liu, Yadong
  • Meng, Lin
  • Jia, Xiao
  • Liu, Yuan
  • Zhou, Lili
  • Nan, Fei
  • Cui, Tengyu
  • Jin, Xiuliang

Abstract

Accurately monitoring the crop water conditions (CWC) is vital for agricultural water management. Traditional in situ measurements are limited by inefficiency and lack of spatial information. However, the development of unmanned aerial vehicle (UAV) applications in agriculture now provides a high throughput and cost-effective method to obtain field crop growth information. Unfortunately, current UAV-based drought indices do not capture the time series information, or the accuracy is limited. This study uses UAV-based multispectral and thermal information and site-observed air temperature to obtain the following three UAV-based drought indices: the normalized relative canopy temperature (NRCT), the temperature vegetation drought index (TVDI), and the three-dimension drought index (TDDI). We evaluate the accuracy with which these indices can be used to characterize the CWC of field maize by comparing them with in situ vegetation moisture contents (VMC). This study aims to (i) evaluate the pertinence of the TDDI for characterizing VMC, (ii) compare the performance of TDDI with that of NRCT and TVDI, and (ii) analyze the spatiotemporal variation of the three drought indices. The results show that (i) TDDI provides the best estimates of VMC (r = 0.71), (ii) NRCT and TVDI are comparable for characterizing VMC (r = 0.59 and 0.63, respectively) and are strongly correlated (r = 0.92), (iii) the three indices characterize the spatial distribution of VMC well, but the multi-phase image information used by TDDI makes it significantly better for studying VMC temporal variations than NRCT and TVDI. The results of this study prove that UAV-based observations can be used to accurately monitor field crop water conditions. In addition, the TDDI provides new insights into the study of remote sensing-based drought indices.

Suggested Citation

  • Cheng, Minghan & Sun, Chengming & Nie, Chenwei & Liu, Shuaibing & Yu, Xun & Bai, Yi & Liu, Yadong & Meng, Lin & Jia, Xiao & Liu, Yuan & Zhou, Lili & Nan, Fei & Cui, Tengyu & Jin, Xiuliang, 2023. "Evaluation of UAV-based drought indices for crop water conditions monitoring: A case study of summer maize," Agricultural Water Management, Elsevier, vol. 287(C).
  • Handle: RePEc:eee:agiwat:v:287:y:2023:i:c:s0378377423003074
    DOI: 10.1016/j.agwat.2023.108442
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423003074
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108442?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K. F. Fung & Y. F. Huang & C. H. Koo, 2020. "Assessing drought conditions through temporal pattern, spatial characteristic and operational accuracy indicated by SPI and SPEI: case analysis for Peninsular Malaysia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2071-2101, September.
    2. Ekinzog, Elmer Kanjo & Schlerf, Martin & Kraft, Martin & Werner, Florian & Riedel, Angela & Rock, Gilles & Mallick, Kaniska, 2022. "Revisiting crop water stress index based on potato field experiments in Northern Germany," Agricultural Water Management, Elsevier, vol. 269(C).
    3. Mwinuka, Paul Reuben & Mbilinyi, Boniface P. & Mbungu, Winfred B. & Mourice, Sixbert K. & Mahoo, H.F. & Schmitter, Petra, 2021. "The feasibility of hand-held thermal and UAV-based multispectral imaging for canopy water status assessment and yield prediction of irrigated African eggplant (Solanum aethopicum L)," Agricultural Water Management, Elsevier, vol. 245(C).
    4. Katimbo, Abia & Rudnick, Daran R. & DeJonge, Kendall C. & Lo, Tsz Him & Qiao, Xin & Franz, Trenton E. & Nakabuye, Hope Njuki & Duan, Jiaming, 2022. "Crop water stress index computation approaches and their sensitivity to soil water dynamics," Agricultural Water Management, Elsevier, vol. 266(C).
    5. Han, Ming & Zhang, Huihui & DeJonge, Kendall C. & Comas, Louise H. & Trout, Thomas J., 2016. "Estimating maize water stress by standard deviation of canopy temperature in thermal imagery," Agricultural Water Management, Elsevier, vol. 177(C), pages 400-409.
    6. Cheng, Minghan & Li, Binbin & Jiao, Xiyun & Huang, Xiao & Fan, Haiyan & Lin, Rencai & Liu, Kaihua, 2022. "Using multimodal remote sensing data to estimate regional-scale soil moisture content: A case study of Beijing, China," Agricultural Water Management, Elsevier, vol. 260(C).
    7. Cheng, Minghan & Jiao, Xiyun & Liu, Yadong & Shao, Mingchao & Yu, Xun & Bai, Yi & Wang, Zixu & Wang, Siyu & Tuohuti, Nuremanguli & Liu, Shuaibing & Shi, Lei & Yin, Dameng & Huang, Xiao & Nie, Chenwei , 2022. "Estimation of soil moisture content under high maize canopy coverage from UAV multimodal data and machine learning," Agricultural Water Management, Elsevier, vol. 264(C).
    8. Elsayed, Salah & Elhoweity, Mohamed & Ibrahim, Hazem H. & Dewir, Yaser Hassan & Migdadi, Hussein M. & Schmidhalter, Urs, 2017. "Thermal imaging and passive reflectance sensing to estimate the water status and grain yield of wheat under different irrigation regimes," Agricultural Water Management, Elsevier, vol. 189(C), pages 98-110.
    9. Cheng, Minghan & Jiao, Xiyun & Jin, Xiuliang & Li, Binbin & Liu, Kaihua & Shi, Lei, 2021. "Satellite time series data reveal interannual and seasonal spatiotemporal evapotranspiration patterns in China in response to effect factors," Agricultural Water Management, Elsevier, vol. 255(C).
    10. DeJonge, Kendall C. & Taghvaeian, Saleh & Trout, Thomas J. & Comas, Louise H., 2015. "Comparison of canopy temperature-based water stress indices for maize," Agricultural Water Management, Elsevier, vol. 156(C), pages 51-62.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Shidan & Cui, Ningbo & Jin, Huaan & Jin, Xiuliang & Guo, Li & Jiang, Shouzheng & Wu, Zongjun & Lv, Min & Chen, Fei & Liu, Quanshan & Wang, Mingjun, 2024. "Optimization of multi-dimensional indices for kiwifruit orchard soil moisture content estimation using UAV and ground multi-sensors," Agricultural Water Management, Elsevier, vol. 294(C).
    2. Zhao, Junfang & Peng, Huiwen & Yang, Jiaqi & Huang, Ruixi & Huo, Zhiguo & Ma, Yuping, 2024. "Response of winter wheat to different drought levels based on Google Earth Engine in the Huang-Huai-Hai Region, China," Agricultural Water Management, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Yinshan & Jiang, Jie & Zhang, Xiufeng & Zhang, Jiayi & Cao, Qiang & Tian, Yongchao & Zhu, Yan & Cao, Weixing & Liu, Xiaojun, 2023. "Combining machine learning algorithm and multi-temporal temperature indices to estimate the water status of rice," Agricultural Water Management, Elsevier, vol. 289(C).
    2. Nakabuye, Hope Njuki & Rudnick, Daran & DeJonge, Kendall C. & Lo, Tsz Him & Heeren, Derek & Qiao, Xin & Franz, Trenton E. & Katimbo, Abia & Duan, Jiaming, 2022. "Real-time irrigation scheduling of maize using Degrees Above Non-Stressed (DANS) index in semi-arid environment," Agricultural Water Management, Elsevier, vol. 274(C).
    3. Katimbo, Abia & Rudnick, Daran R. & Liang, Wei-zhen & DeJonge, Kendall C. & Lo, Tsz Him & Franz, Trenton E. & Ge, Yufeng & Qiao, Xin & Kabenge, Isa & Nakabuye, Hope Njuki & Duan, Jiaming, 2022. "Two source energy balance maize evapotranspiration estimates using close-canopy mobile infrared sensors and upscaling methods under variable water stress conditions," Agricultural Water Management, Elsevier, vol. 274(C).
    4. Zhang, Liyuan & Zhang, Huihui & Han, Wenting & Niu, Yaxiao & Chávez, José L. & Ma, Weitong, 2021. "The mean value of gaussian distribution of excess green index: A new crop water stress indicator," Agricultural Water Management, Elsevier, vol. 251(C).
    5. Shao, Guomin & Han, Wenting & Zhang, Huihui & Zhang, Liyuan & Wang, Yi & Zhang, Yu, 2023. "Prediction of maize crop coefficient from UAV multisensor remote sensing using machine learning methods," Agricultural Water Management, Elsevier, vol. 276(C).
    6. Ezenne, G.I. & Jupp, Louise & Mantel, S.K. & Tanner, J.L., 2019. "Current and potential capabilities of UAS for crop water productivity in precision agriculture," Agricultural Water Management, Elsevier, vol. 218(C), pages 158-164.
    7. Zhang, Liyuan & Zhang, Huihui & Han, Wenting & Niu, Yaxiao & Chávez, José L. & Ma, Weitong, 2022. "Effects of image spatial resolution and statistical scale on water stress estimation performance of MGDEXG: A new crop water stress indicator derived from RGB images," Agricultural Water Management, Elsevier, vol. 264(C).
    8. Zhang, Minne & Zhao, Weixia & Zhu, Changxin & Li, Jiusheng, 2024. "Influence of the sampling time interval of canopy temperature on the dynamic zoning of variable rate irrigation," Agricultural Water Management, Elsevier, vol. 295(C).
    9. Bhatti, Sandeep & Heeren, Derek M. & Evett, Steven R. & O’Shaughnessy, Susan A. & Rudnick, Daran R. & Franz, Trenton E. & Ge, Yufeng & Neale, Christopher M.U., 2022. "Crop response to thermal stress without yield loss in irrigated maize and soybean in Nebraska," Agricultural Water Management, Elsevier, vol. 274(C).
    10. Zhang, Yu & Han, Wenting & Zhang, Huihui & Niu, Xiaotao & Shao, Guomin, 2023. "Evaluating maize evapotranspiration using high-resolution UAV-based imagery and FAO-56 dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 275(C).
    11. de Almeida, Ailson Maciel & Coelho, Rubens Duarte & da Silva Barros, Timóteo Herculino & de Oliveira Costa, Jéfferson & Quiloango-Chimarro, Carlos Alberto & Moreno-Pizani, Maria Alejandra & Farias-Ram, 2022. "Water productivity and canopy thermal response of pearl millet subjected to different irrigation levels," Agricultural Water Management, Elsevier, vol. 272(C).
    12. Cheng, Minghan & Jiao, Xiyun & Liu, Yadong & Shao, Mingchao & Yu, Xun & Bai, Yi & Wang, Zixu & Wang, Siyu & Tuohuti, Nuremanguli & Liu, Shuaibing & Shi, Lei & Yin, Dameng & Huang, Xiao & Nie, Chenwei , 2022. "Estimation of soil moisture content under high maize canopy coverage from UAV multimodal data and machine learning," Agricultural Water Management, Elsevier, vol. 264(C).
    13. Khorsand, Afshin & Rezaverdinejad, Vahid & Asgarzadeh, Hossein & Majnooni-Heris, Abolfazl & Rahimi, Amir & Besharat, Sina, 2019. "Irrigation scheduling of maize based on plant and soil indices with surface drip irrigation subjected to different irrigation regimes," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    14. Han, Ming & Zhang, Huihui & DeJonge, Kendall C. & Comas, Louise H. & Gleason, Sean, 2018. "Comparison of three crop water stress index models with sap flow measurements in maize," Agricultural Water Management, Elsevier, vol. 203(C), pages 366-375.
    15. Meng Luo & Shengwei Zhang & Lei Huang & Zhiqiang Liu & Lin Yang & Ruishen Li & Xi Lin, 2022. "Temporal and Spatial Changes of Ecological Environment Quality Based on RSEI: A Case Study in Ulan Mulun River Basin, China," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    16. Zhang, Liyuan & Zhang, Huihui & Zhu, Qingzhen & Niu, Yaxiao, 2023. "Further investigating the performance of crop water stress index for maize from baseline fluctuation, effects of environmental factors, and variation of critical value," Agricultural Water Management, Elsevier, vol. 285(C).
    17. Deng, Juntao & Pan, Shijia & Zhou, Mingu & Gao, Wen & Yan, Yuncai & Niu, Zijie & Han, Wenting, 2023. "Optimum sampling window size and vegetation index selection for low-altitude multispectral estimation of root soil moisture content for Xuxiang Kiwifruit," Agricultural Water Management, Elsevier, vol. 282(C).
    18. Junhao Liu & Zhe Hao & Jianli Ding & Yukun Zhang & Zhiguo Miao & Yu Zheng & Alimira Alimu & Huiling Cheng & Xiang Li, 2024. "Ensemble Machine-Learning-Based Framework for Estimating Surface Soil Moisture Using Sentinel-1/2 Data: A Case Study of an Arid Oasis in China," Land, MDPI, vol. 13(10), pages 1-21, October.
    19. Vantyghem, Mathilde & Merckx, Roel & Stevens, Bert & Hood-Nowotny, Rebecca & Swennen, Rony & Dercon, Gerd, 2022. "The potential of stable carbon isotope ratios and leaf temperature as proxies for drought stress in banana under field conditions," Agricultural Water Management, Elsevier, vol. 260(C).
    20. Tailin Li & Massimiliano Schiavo & David Zumr, . "Seasonal variations of vegetative indices and their correlation with evapotranspiration and soil water storage in a small agricultural catchment," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 0.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:287:y:2023:i:c:s0378377423003074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.