IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v243y2021ics0378377420314001.html
   My bibliography  Save this article

A Decade of Irrigation Water use trends in Southwestern USA: The Role of Irrigation Technology, Best Management Practices, and Outreach Education Programs

Author

Listed:
  • Mpanga, Isaac K.
  • Idowu, Omololu John

Abstract

Irrigation water is crucial for farm operations in the world, with irrigated lands contributing about 40% to food and fiber production. In semi-arid regions such as the Southwestern United States, the demand for irrigation water has increased due to population growth, rising temperatures, and severe drought events in the region. Irrigation plays a vital role in the economies of southwestern states and requires comparative studies to understand the current situation and to propose possible improvement strategies. This study investigated the trend of irrigated cropland, the quantity of irrigation water use, irrigation technology, scheduling decisions, and irrigation outreach using data from 2007 and 2017 United States Department of Agriculture (USDA) National Agriculture Statistics Service (NASS) census. Harvested cropland in the region remained the same with minimal increase in total irrigated land (1%) and the quantity of irrigated water used (2%). However, gravity irrigation methods reduced significantly by 12%, with a 71% increase in the use of drip irrigation systems. The increase in the adoption of soil moisture sensors (55%), plant sensors (107%), government schedules (29%), and supplier’s schedules (50%) for irrigation scheduling decisions, did not translate to a reduction in irrigation water use at the regional level. However, at the state level within the same period, Arizona recorded an increase in irrigated cropland by 10% and harvested cropland by 9%, with a reduction in the quantity of irrigation water used (-5%). The gains in Arizona could be associated with the combined effects of improved irrigation technologies and the use of best management decisions, which could serve as a model for prudent water use in the southwest. There is a need to increase the effort in science-based education and extension programming on integrated approaches that emphasize both irrigation technology and the best management practices, which include seed selection for drought-tolerant crops.

Suggested Citation

  • Mpanga, Isaac K. & Idowu, Omololu John, 2021. "A Decade of Irrigation Water use trends in Southwestern USA: The Role of Irrigation Technology, Best Management Practices, and Outreach Education Programs," Agricultural Water Management, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:agiwat:v:243:y:2021:i:c:s0378377420314001
    DOI: 10.1016/j.agwat.2020.106438
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377420314001
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106438?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rajagopal, 2014. "Technology Diffusion and Adoption," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 6, pages 148-173, Palgrave Macmillan.
    2. Margarita Genius & Phoebe Koundouri & Céline Nauges & Vangelis Tzouvelekas, 2014. "Information Transmission in Irrigation Technology Adoption and Diffusion: Social Learning, Extension Services, and Spatial Effects," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(1), pages 328-344.
    3. Janis M. Carey & David Zilberman, 2002. "A Model of Investment under Uncertainty: Modern Irrigation Technology and Emerging Markets in Water," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(1), pages 171-183.
    4. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2018. "Determining water use efficiency of wheat and cotton: A meta-regression analysis," Agricultural Water Management, Elsevier, vol. 199(C), pages 48-60.
    5. Huffaker, Ray & Whittlesey, Norman, 2000. "The allocative efficiency and conservation potential of water laws encouraging investments in on-farm irrigation technology," Agricultural Economics, Blackwell, vol. 24(1), pages 47-60, December.
    6. Levidow, Les & Zaccaria, Daniele & Maia, Rodrigo & Vivas, Eduardo & Todorovic, Mladen & Scardigno, Alessandra, 2014. "Improving water-efficient irrigation: Prospects and difficulties of innovative practices," Agricultural Water Management, Elsevier, vol. 146(C), pages 84-94.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asad Sarwar Qureshi & Chris Perry, 2021. "Managing Water and Salt for Sustainable Agriculture in the Indus Basin of Pakistan," Sustainability, MDPI, vol. 13(9), pages 1-14, May.
    2. Yang, Linshan & Feng, Qi & Lu, Tiaoxue & Adamowski, Jan F. & Yin, Zhenliang & Hatami, Shadi & Zhu, Meng & Wen, Xiaohu, 2023. "The response of agroecosystem water use efficiency to cropland change in northwest China’s Hexi Corridor," Agricultural Water Management, Elsevier, vol. 276(C).
    3. Ruchie Pathak & Nicholas R. Magliocca, 2022. "Assessing the Representativeness of Irrigation Adoption Studies: A Meta-Study of Global Research," Agriculture, MDPI, vol. 12(12), pages 1-31, December.
    4. Elshikha, Diaa Eldin M. & Hunsaker, Douglas J. & Waller, Peter M. & Thorp, Kelly R. & Dierig, David & Wang, Guangyao & Cruz, Von Mark V. & Katterman, Matthew E. & Bronson, Kevin F. & Wall, Gerard W. &, 2022. "Estimation of direct-seeded guayule cover, crop coefficient, and yield using UAS-based multispectral and RGB data," Agricultural Water Management, Elsevier, vol. 265(C).
    5. Nong, Duy & Mason-D’Croz, Daniel & Lu, Yingying & Marcos Martinez, Raymundo & Palmer, Jeda, 2021. "An introduction of GTEM-Food: A baseline calibration with a focus on food," Conference papers 333304, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    6. Diana Martínez-Arteaga & Nolver Atanasio Arias Arias & Aquiles E. Darghan & Carlos Rivera & Jorge Alonso Beltran, 2023. "Typology of Irrigation Technology Adopters in Oil Palm Production: A Categorical Principal Components and Fuzzy Logic Approach," Sustainability, MDPI, vol. 15(13), pages 1-11, June.
    7. Diana Martínez-Arteaga & Nolver Atanacio Arias Arias & Aquiles E. Darghan & Dursun Barrios, 2023. "Identification of Influential Factors in the Adoption of Irrigation Technologies through Neural Network Analysis: A Case Study with Oil Palm Growers," Agriculture, MDPI, vol. 13(4), pages 1-13, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gonzalo Villa‐Cox & Francesco Cavazza & Cristian Jordan & Mijail Arias‐Hidalgo & Paúl Herrera & Ramon Espinel & Davide Viaggi & Stijn Speelman, 2021. "Understanding constraints on private irrigation adoption decisions under uncertainty in data constrained settings: A novel empirical approach tested on Ecuadorian Cocoa cultivations," Agricultural Economics, International Association of Agricultural Economists, vol. 52(6), pages 985-999, November.
    2. Li, Haoyang & Zhao, Jinhua, 2018. "What Drives (No) Adoption of New Irrigation Technologies: A Structural Dynamic Estimation Approach," 2018 Annual Meeting, August 5-7, Washington, D.C. 274474, Agricultural and Applied Economics Association.
    3. Bahta, Y. & Owusu-Sekyeer, E., 2018. "Nexus between homestead food garden programme and land ownership in South Africa: Implication on the income of vegetable farmers," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277732, International Association of Agricultural Economists.
    4. Mekonnen, Dawit K. & Dorfman, Jeffrey H., 2017. "Synergy and Learning Effects of Informal Labor-Sharing Arrangements," World Development, Elsevier, vol. 99(C), pages 1-14.
    5. Alejandra Engler & Roberto Jara-Rojas & Carlos Bopp, 2016. "Efficient use of Water Resources in Vineyards: A Recursive joint Estimation for the Adoption of Irrigation Technology and Scheduling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5369-5383, November.
    6. Linda Steinhübel & Johannes Wegmann & Oliver Mußhoff, 2020. "Digging deep and running dry—the adoption of borewell technology in the face of climate change and urbanization," Agricultural Economics, International Association of Agricultural Economists, vol. 51(5), pages 685-706, September.
    7. Enid M. Katungi & Catherine Larochelle & Josephat R. Mugabo & Robin Buruchara, 2018. "The effect of climbing bean adoption on the welfare of smallholder common bean growers in Rwanda," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(1), pages 61-79, February.
    8. Gabriel S. Sampson & Edward D. Perry, 2019. "Peer effects in the diffusion of water‐saving agricultural technologies," Agricultural Economics, International Association of Agricultural Economists, vol. 50(6), pages 693-706, November.
    9. Tesfaye, Wondimagegn & Tirivayi, Nyasha, 2016. "The effect of improved storage innovations on food security and welfare in Ethiopia," MERIT Working Papers 2016-063, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    10. Wu, Haixia & Ge, Yan & Li, Jianping, 2023. "Uncertainty, time preference and households’ adoption of rooftop photovoltaic technology," Energy, Elsevier, vol. 276(C).
    11. Balaine, Lorraine & Dillon, Emma J. & Läpple, Doris & Lynch, John, 2020. "Can technology help achieve sustainable intensification? Evidence from milk recording on Irish dairy farms," Land Use Policy, Elsevier, vol. 92(C).
    12. Gobillon, Laurent & Wolff, François-Charles, 2020. "The local effects of an innovation: Evidence from the French fish market," Ecological Economics, Elsevier, vol. 171(C).
    13. Hrozencik, Aaron & Aillery, Marcel, 2021. "Trends in U.S. Irrigated Agriculture: Increasing Resilience Under Water Supply Scarcity," USDA Miscellaneous 316792, United States Department of Agriculture.
    14. Phoebe Koundouri & Vassilis Skianis, 2015. "Socio-Economics and Water Management: Revisiting the Contribution of Economics in the Implementation of the Water Framework Directive in Greece and Cyprus," DEOS Working Papers 1506, Athens University of Economics and Business.
    15. Ward, Patrick S. & Bell, Andrew R. & Droppelmann, Klaus & Benton, Tim, 2016. "Understanding compliance in programs promoting conservation agriculture: Modeling a case study in Malawi," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235610, Agricultural and Applied Economics Association.
    16. Abdul Nafeo Abdulai & Awal Abdul-Rahaman & Gazali Issahaku, 2021. "Adoption and diffusion of conservation agriculture technology in Zambia: the role of social and institutional networks," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(4), pages 761-780, October.
    17. Faruque-As-Sunny & Zuhui Huang & Taonarufaro Tinaye Pemberai Karimanzira, 2018. "Investigating Key Factors Influencing Farming Decisions Based on Soil Testing and Fertilizer Recommendation Facilities (STFRF)—A Case Study on Rural Bangladesh," Sustainability, MDPI, vol. 10(11), pages 1-24, November.
    18. Gebru, Menasbo & Holden , Stein T. & Alfnes, Frode, 2020. "Adoption of agricultural technologies in the semi-arid northern Ethiopia: A Panel Data Analysis," CLTS Working Papers 3/20, Norwegian University of Life Sciences, Centre for Land Tenure Studies.
    19. Owusu-Sekyere, Enoch & Bibariwiah, Cindy & Owusu, Victor & Donkor, Emmanuel, 2021. "Farming under irrigation management transfer scheme and its impact on yield and net returns in Ghana," Land Use Policy, Elsevier, vol. 102(C).
    20. Galioto, F., 2018. "The value of information for the management of water resources in agriculture: comparing the economic impact of alternative sources of information to schedule irrigation," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277384, International Association of Agricultural Economists.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:243:y:2021:i:c:s0378377420314001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.