IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v276y2023ics0378377422006096.html
   My bibliography  Save this article

The response of agroecosystem water use efficiency to cropland change in northwest China’s Hexi Corridor

Author

Listed:
  • Yang, Linshan
  • Feng, Qi
  • Lu, Tiaoxue
  • Adamowski, Jan F.
  • Yin, Zhenliang
  • Hatami, Shadi
  • Zhu, Meng
  • Wen, Xiaohu

Abstract

China’s rapid population growth has inevitably led to a need for cropland expansion to meet food security challenges. In arid regions such an expansion is restricted by limited water resources, and an increase in productivity per cropland area must be achieved while still limiting water use. However, the response of agroecosystem Water Use Efficiency (WUEa.e.) to alterations in cropland use in Northwest China’s Hexi Corridor has not been documented in any great detail. This has limited our understanding of the region’s water-carbon interactions and, in particular, how effective cropland management and efficient water utilization protocols might be applied there. The response of the region’s WUEa.e. to different potential shifts in cropland was evaluated by drawing on growing season (2003–2020), Gross Primary Productivity (GPP) and actual evapotranspiration (ETcact) data. Over this period net cropland area increased, with 12.3 % of total cropland transferred in, but only 2.5 % of cropland transferred out. The trend in growing season WUEa.e. was greatest in cropland regions transferred in (p < 0.05), and lowest in the cropland transferred out, indicating irrigation and field management in cropland could ensure that WUEa.e. could be maintained at a higher level. Among the different cropland transformation types, the impact of cropland change on WUEa.e. was essentially determined by shifting correlations between GPP and ETcact. This correlation was weakened when the water supply increased, heightening the negative impact of ETcact on WUEa.e., while weakening the positive impact of GPP on WUEa.e.. There was a tradeoff point for the level of irrigation between improving WUEa.e. and crop yield. Suitable water-saving irrigation is crucial to maintaining a relatively high level of WUEa.e., yet not decreasing crop yield. Water-saving irrigation in the Shiyang River basin was deemed to have limited potential, whereas in the Shule River and Heihe River basins there remains some potential for such irrigation. The present study’s results can potentially inform agricultural water and land management in the region, and provide the basis for efficient water resources utilization.

Suggested Citation

  • Yang, Linshan & Feng, Qi & Lu, Tiaoxue & Adamowski, Jan F. & Yin, Zhenliang & Hatami, Shadi & Zhu, Meng & Wen, Xiaohu, 2023. "The response of agroecosystem water use efficiency to cropland change in northwest China’s Hexi Corridor," Agricultural Water Management, Elsevier, vol. 276(C).
  • Handle: RePEc:eee:agiwat:v:276:y:2023:i:c:s0378377422006096
    DOI: 10.1016/j.agwat.2022.108062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422006096
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.108062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Himanshu, Sushil Kumar & Fan, Yubing & Ale, Srinivasulu & Bordovsky, James, 2021. "Simulated efficient growth-stage-based deficit irrigation strategies for maximizing cotton yield, crop water productivity and net returns," Agricultural Water Management, Elsevier, vol. 250(C).
    2. Yu, Liuyang & Zhao, Xining & Gao, Xiaodong & Siddique, Kadambot H.M., 2020. "Improving/maintaining water-use efficiency and yield of wheat by deficit irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 228(C).
    3. Mpanga, Isaac K. & Idowu, Omololu John, 2021. "A Decade of Irrigation Water use trends in Southwestern USA: The Role of Irrigation Technology, Best Management Practices, and Outreach Education Programs," Agricultural Water Management, Elsevier, vol. 243(C).
    4. Qi Feng & Linshan Yang & Ravinesh C. Deo & Amir AghaKouchak & Jan F. Adamowski & Roger Stone & Zhenliang Yin & Wei Liu & Jianhua Si & Xiaohu Wen & Meng Zhu & Shixiong Cao, 2019. "Domino effect of climate change over two millennia in ancient China’s Hexi Corridor," Nature Sustainability, Nature, vol. 2(10), pages 957-961, October.
    5. Tian, Fei & Zhang, Yu & Lu, Saihong, 2020. "Spatial-temporal dynamics of cropland ecosystem water-use efficiency and the responses to agricultural water management in the Shiyang River Basin, northwestern China," Agricultural Water Management, Elsevier, vol. 237(C).
    6. Kumar Jha, Shiva & Ramatshaba, Tefo Steve & Wang, Guangshuai & Liang, Yueping & Liu, Hao & Gao, Yang & Duan, Aiwang, 2019. "Response of growth, yield and water use efficiency of winter wheat to different irrigation methods and scheduling in North China Plain," Agricultural Water Management, Elsevier, vol. 217(C), pages 292-302.
    7. Zhu, Qiuan & Jiang, Hong & Peng, Changhui & Liu, Jinxun & Wei, Xiaohua & Fang, Xiuqin & Liu, Shirong & Zhou, Guomo & Yu, Shuquan, 2011. "Evaluating the effects of future climate change and elevated CO2 on the water use efficiency in terrestrial ecosystems of China," Ecological Modelling, Elsevier, vol. 222(14), pages 2414-2429.
    8. Zhou, Qing & Zhang, Yali & Wu, Feng, 2021. "Evaluation of the most proper management scale on water use efficiency and water productivity: A case study of the Heihe River Basin, China," Agricultural Water Management, Elsevier, vol. 246(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xianglong Tang & Leshan Cai & Pengzhen Du, 2024. "Spatiotemporal Evolution and Driving Forces of Production-Living-Ecological Space in Arid Ecological Transition Zone Based on Functional and Structural Perspectives: A Case Study of the Hexi Corridor," Sustainability, MDPI, vol. 16(15), pages 1-23, August.
    2. Le Cao & Xuequan Liu & Pucheng Zhu & Lifang Wang, 2024. "The Distribution and Evolution of Groundwater Level Depths and Groundwater Sustainability in the Hexi Corridor over the Last Five Years," Sustainability, MDPI, vol. 16(6), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Firouzabadi, Ali Ghadami & Baghani, Javad & Jovzi, Mehdi & Albaji, Mohammad, 2021. "Effects of wheat row spacing layout and drip tape spacing on yield and water productivity in sandy clay loam soil in a semi-arid region," Agricultural Water Management, Elsevier, vol. 251(C).
    2. Ji Zhang & Shiqi Yang & Shengtian Yang & Li Fan & Xu Zhou, 2023. "Spatio-Temporal Variations of Ecosystem Water Use Efficiency and Its Drivers in Southwest China," Land, MDPI, vol. 12(2), pages 1-15, February.
    3. Xin Zhang & Jianheng Zhang & Jiaxin Xue & Guiyan Wang, 2023. "Improving Wheat Yield and Water-Use Efficiency by Optimizing Irrigations in Northern China," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
    4. Liu, Shuaikang & Lin, Xiang & Wang, Weiyan & Zhang, Baojun & Wang, Dong, 2022. "Supplemental irrigation increases grain yield, water productivity, and nitrogen utilization efficiency by improving nitrogen nutrition status in winter wheat," Agricultural Water Management, Elsevier, vol. 264(C).
    5. Yang, Danni & Li, Sien & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Mao, Xiaomin & Tong, Ling & Hao, Xinmei & Ding, Risheng & Niu, Jun, 2020. "Effect of drip irrigation on wheat evapotranspiration, soil evaporation and transpiration in Northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
    6. Meena, Raj Pal & Karnam, Venkatesh & R, Sendhil & Rinki, & Sharma, R.K. & Tripathi, S.C. & Singh, Gyanendra Pratap, 2019. "Identification of water use efficient wheat genotypes with high yield for regions of depleting water resources in India," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    7. Imran Sajid & Bernhard Tischbein & Christian Borgemeister & Martina Flörke, 2022. "Assessing Barriers in Adaptation of Water Management Innovations under Rotational Canal Water Distribution System," Agriculture, MDPI, vol. 12(7), pages 1-16, June.
    8. Dongrui Han & Hongyan Cai & Xiaohuan Yang & Xinliang Xu, 2020. "Multi-Source Data Modeling of the Spatial Distribution of Winter Wheat Yield in China from 2000 to 2015," Sustainability, MDPI, vol. 12(13), pages 1-16, July.
    9. Dimas de Barros Santiago & Humberto Alves Barbosa & Washington Luiz Félix Correia Filho & José Francisco de Oliveira-Júnior & Franklin Paredes-Trejo & Catarina de Oliveira Buriti, 2022. "Variability of Water Use Efficiency Associated with Climate Change in the Extreme West of Bahia," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
    10. França, Ana Carolina Ferreira & Coelho, Rubens Duarte & da Silva Gundim, Alice & de Oliveira Costa, Jéfferson & Quiloango-Chimarro, Carlos Alberto, 2024. "Effects of different irrigation scheduling methods on physiology, yield, and irrigation water productivity of soybean varieties," Agricultural Water Management, Elsevier, vol. 293(C).
    11. Lu, Junsheng & Geng, Chenming & Cui, Xiaolu & Li, Mengyue & Chen, Shuaihong & Hu, Tiantian, 2021. "Response of drip fertigated wheat-maize rotation system on grain yield, water productivity and economic benefits using different water and nitrogen amounts," Agricultural Water Management, Elsevier, vol. 258(C).
    12. Wang, Haidong & Wang, Naijiang & Quan, Hao & Zhang, Fucang & Fan, Junliang & Feng, Hao & Cheng, Minghui & Liao, Zhenqi & Wang, Xiukang & Xiang, Youzhen, 2022. "Yield and water productivity of crops, vegetables and fruits under subsurface drip irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 269(C).
    13. Zhang, Tibin & Zou, Yufeng & Kisekka, Isaya & Biswas, Asim & Cai, Huanjie, 2021. "Comparison of different irrigation methods to synergistically improve maize’s yield, water productivity and economic benefits in an arid irrigation area," Agricultural Water Management, Elsevier, vol. 243(C).
    14. Li, Haoru & Li, Xiaoli & Mei, Xurong & Nangia, Vinay & Guo, Rui & Hao, Weiping & Wang, Jiandong, 2023. "An alternative water-fertilizer-saving management practice for wheat-maize cropping system in the North China Plain: Based on a 4-year field study," Agricultural Water Management, Elsevier, vol. 276(C).
    15. Muhammad Zain & Zhuanyun Si & Sen Li & Yang Gao & Faisal Mehmood & Shafeeq-Ur Rahman & Abdoul Kader Mounkaila Hamani & Aiwang Duan, 2021. "The Coupled Effects of Irrigation Scheduling and Nitrogen Fertilization Mode on Growth, Yield and Water Use Efficiency in Drip-Irrigated Winter Wheat," Sustainability, MDPI, vol. 13(5), pages 1-17, March.
    16. Liao, Zhenqi & Zeng, Hualiang & Fan, Junliang & Lai, Zhenlin & Zhang, Chen & Zhang, Fucang & Wang, Haidong & Cheng, Minghui & Guo, Jinjin & Li, Zhijun & Wu, Peng, 2022. "Effects of plant density, nitrogen rate and supplemental irrigation on photosynthesis, root growth, seed yield and water-nitrogen use efficiency of soybean under ridge-furrow plastic mulching," Agricultural Water Management, Elsevier, vol. 268(C).
    17. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Zhang, Shaohui & Wang, Yanli & Li, Yuepeng & Sun, Xin & Yang, Ling & Zhang, Fucang, 2021. "Water productivity and seed cotton yield in response to deficit irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 255(C).
    18. Diana Martínez-Arteaga & Nolver Atanacio Arias Arias & Aquiles E. Darghan & Dursun Barrios, 2023. "Identification of Influential Factors in the Adoption of Irrigation Technologies through Neural Network Analysis: A Case Study with Oil Palm Growers," Agriculture, MDPI, vol. 13(4), pages 1-13, April.
    19. Asmamaw, Desale Kidane & Janssens, Pieter & Dessie, Mekete & Tilahun, Seifu A. & Adgo, Enyew & Nyssen, Jan & Walraevens, Kristine & Assaye, Habtamu & Yenehun, Alemu & Nigate, Fenta & Cornelis, Wim M., 2023. "Effect of deficit irrigation and soil fertility management on wheat production and water productivity in the Upper Blue Nile Basin, Ethiopia," Agricultural Water Management, Elsevier, vol. 277(C).
    20. Li, Pei & Ren, Li, 2023. "Evaluating the differences in irrigation methods for winter wheat under limited irrigation quotas in the water-food-economy nexus in the North China Plain," Agricultural Water Management, Elsevier, vol. 289(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:276:y:2023:i:c:s0378377422006096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.