IDEAS home Printed from https://ideas.repec.org/a/spr/envpol/v23y2021i4d10.1007_s10018-020-00298-z.html
   My bibliography  Save this article

Adoption and diffusion of conservation agriculture technology in Zambia: the role of social and institutional networks

Author

Listed:
  • Abdul Nafeo Abdulai

    (Frannan International/Global Affairs Canada)

  • Awal Abdul-Rahaman

    (University for Development Studies)

  • Gazali Issahaku

    (University for Development Studies)

Abstract

This study utilizes recall data from smallholder farmers in selected provinces in Zambia to examine the role of social and institutional networks, as well as other farm and household factors in the adoption and diffusion of conservation agriculture (CA) technology. We employed a dynamic discrete-time hazard model to capture the time path to adoption. The empirical results show that conditional on several potentially confounding factors, conservation agriculture technology adoption and diffusion are positively and significantly influenced by farmers’ access to information from social networks and institutional networks like extension services. Adoption decisions are also found to be significantly influenced by age, education, market distance, as well as location fixed effects.

Suggested Citation

  • Abdul Nafeo Abdulai & Awal Abdul-Rahaman & Gazali Issahaku, 2021. "Adoption and diffusion of conservation agriculture technology in Zambia: the role of social and institutional networks," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(4), pages 761-780, October.
  • Handle: RePEc:spr:envpol:v:23:y:2021:i:4:d:10.1007_s10018-020-00298-z
    DOI: 10.1007/s10018-020-00298-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10018-020-00298-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10018-020-00298-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Awudu Abdulai & Wallace E. Huffman, 2005. "The Diffusion of New Agricultural Technologies: The Case of Crossbred-Cow Technology in Tanzania," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(3), pages 645-659.
    2. Meyer, Bruce D, 1990. "Unemployment Insurance and Unemployment Spells," Econometrica, Econometric Society, vol. 58(4), pages 757-782, July.
    3. Michael Burton & Dan Rigby & Trevor Young, 2003. "Modelling the adoption of organic horticultural technology in the UK using Duration Analysis," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 47(1), pages 29-54, March.
    4. Sueyoshi, Glenn T, 1995. "A Class of Binary Response Models for Grouped Duration Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(4), pages 411-431, Oct.-Dec..
    5. Huffman, Wallace E., 2001. "Human capital: Education and agriculture," Handbook of Agricultural Economics, in: B. L. Gardner & G. C. Rausser (ed.), Handbook of Agricultural Economics, edition 1, volume 1, chapter 7, pages 333-381, Elsevier.
    6. Charles F. Manski, 1993. "Identification of Endogenous Social Effects: The Reflection Problem," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(3), pages 531-542.
    7. Rajagopal, 2014. "Technology Diffusion and Adoption," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 6, pages 148-173, Palgrave Macmillan.
    8. Margarita Genius & Phoebe Koundouri & Céline Nauges & Vangelis Tzouvelekas, 2014. "Information Transmission in Irrigation Technology Adoption and Diffusion: Social Learning, Extension Services, and Spatial Effects," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(1), pages 328-344.
    9. Jenkins, Stephen P, 1995. "Easy Estimation Methods for Discrete-Time Duration Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 57(1), pages 129-138, February.
    10. Fuglie, Keith O., 1999. "Conservation Tillage and Pesticide Use in the Cornbelt," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 31(1), pages 133-147, April.
    11. Noltze, Martin & Schwarze, Stefan & Qaim, Matin, 2012. "Understanding the adoption of system technologies in smallholder agriculture: The system of rice intensification (SRI) in Timor Leste," Agricultural Systems, Elsevier, vol. 108(C), pages 64-73.
    12. George Marbuah, 2019. "Is willingness to contribute for environmental protection in Sweden affected by social capital?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(3), pages 451-475, July.
    13. Murphy, Kevin M & Topel, Robert H, 2002. "Estimation and Inference in Two-Step Econometric Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 88-97, January.
    14. Drew Fudenberg & Jean Tirole, 1985. "Preemption and Rent Equalization in the Adoption of New Technology," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 52(3), pages 383-401.
    15. Komarek, Adam M. & Kwon, Hoyoung & Haile, Beliyou & Thierfelder, Christian & Mutenje, Munyaradzi J. & Azzarri, Carlo, 2019. "From plot to scale: ex-ante assessment of conservation agriculture in Zambia," Agricultural Systems, Elsevier, vol. 173(C), pages 504-518.
    16. Kimhi, Ayal & Bollman, Ray, 1999. "Family farm dynamics in Canada and Israel: the case of farm exits," Agricultural Economics, Blackwell, vol. 21(1), pages 69-79, August.
    17. Leggesse Dadi & Michael Burton & Adam Ozanne, 2004. "Duration Analysis of Technological Adoption in Ethiopian Agriculture," Journal of Agricultural Economics, Wiley Blackwell, vol. 55(3), pages 613-631, November.
    18. Annemie Maertens & Christopher B. Barrett, 2013. "Measuring Social Networks' Effects on Agricultural Technology Adoption," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(2), pages 353-359.
    19. Massoud Karshenas & Paul L. Stoneman, 1993. "Rank, Stock, Order, and Epidemic Effects in the Diffusion of New Process Technologies: An Empirical Model," RAND Journal of Economics, The RAND Corporation, vol. 24(4), pages 503-528, Winter.
    20. Brown, Brendan & Nuberg, Ian & Llewellyn, Rick, 2017. "Stepwise frameworks for understanding the utilisation of conservation agriculture in Africa," Agricultural Systems, Elsevier, vol. 153(C), pages 11-22.
    21. B. L. Gardner & G. C. Rausser (ed.), 2001. "Handbook of Agricultural Economics," Handbook of Agricultural Economics, Elsevier, edition 1, volume 1, number 2.
    22. Pramila Krishnan & Manasa Patnam, 2014. "Neighbors and Extension Agents in Ethiopia: Who Matters More for Technology Adoption?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(1), pages 308-327.
    23. B. L. Gardner & G. C. Rausser (ed.), 2001. "Handbook of Agricultural Economics," Handbook of Agricultural Economics, Elsevier, edition 1, volume 1, number 1.
    24. Mariano, Marc Jim & Villano, Renato & Fleming, Euan, 2012. "Factors influencing farmers’ adoption of modern rice technologies and good management practices in the Philippines," Agricultural Systems, Elsevier, vol. 110(C), pages 41-53.
    25. Michler, Jeffrey D. & Baylis, Kathy & Arends-Kuenning, Mary & Mazvimavi, Kizito, 2019. "Conservation agriculture and climate resilience," Journal of Environmental Economics and Management, Elsevier, vol. 93(C), pages 148-169.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gang Cui & Zhicheng Liu, 2022. "The Impact of Environmental Regulations and Social Norms on Farmers’ Chemical Fertilizer Reduction Behaviors: An Investigation of Citrus Farmers in Southern China," Sustainability, MDPI, vol. 14(13), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khataza, Robertson R.B. & Doole, Graeme J. & Kragt, Marit E. & Hailu, Atakelty, 2018. "Information acquisition, learning and the adoption of conservation agriculture in Malawi: A discrete-time duration analysis," Technological Forecasting and Social Change, Elsevier, vol. 132(C), pages 299-307.
    2. Vaiknoras, Kate A. & Larochelle, Catherine & Birol, Ekin & Asare-Marfo, Dorene & Herrington, Caitlin, 2017. "The Roles of Formal and Informal Delivery Approaches in Achieving Fast and Sustained Adoption of Biofortified Crops: Learnings from the Iron Bean Delivery Approaches in Rwanda," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258288, Agricultural and Applied Economics Association.
    3. Nian, Yefan & Huang, Qiuqiong & Kovacs, Kent, 2018. "The Use of Irrigation Practices by Arkansas Producers: The Impacts and Influencing Factors," 2018 Annual Meeting, February 2-6, 2018, Jacksonville, Florida 266639, Southern Agricultural Economics Association.
    4. Tisorn Songsermsawas & Kathy Baylis & Ashwini Chhatre & Hope Michelson, 2014. "Can Peers Improve Agricultural Productivity?," CESifo Working Paper Series 4958, CESifo.
    5. Manda, Julius & Feleke, Shiferaw & Mutungi, Christopher & Tufa, Adane H. & Mateete, Bekunda & Abdoulaye, Tahirou & Alene, Arega D., 2024. "Assessing the speed of improved postharvest technology adoption in Tanzania: The role of social learning and agricultural extension services," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
    6. Linda Steinhübel & Johannes Wegmann & Oliver Mußhoff, 2020. "Digging deep and running dry—the adoption of borewell technology in the face of climate change and urbanization," Agricultural Economics, International Association of Agricultural Economists, vol. 51(5), pages 685-706, September.
    7. Gabriel S. Sampson & Edward D. Perry, 2019. "Peer effects in the diffusion of water‐saving agricultural technologies," Agricultural Economics, International Association of Agricultural Economists, vol. 50(6), pages 693-706, November.
    8. Lu, Wencong & Horlu, Godwin Seyram Agbemavor Kwasi, 2019. "Transition of small farms in Ghana: perspectives of farm heritage, employment and networks," Land Use Policy, Elsevier, vol. 81(C), pages 434-452.
    9. Yanbing Wang & Niklas Möhring & Robert Finger, 2023. "When my neighbors matter: Spillover effects in the adoption of large‐scale pesticide‐free wheat production," Agricultural Economics, International Association of Agricultural Economists, vol. 54(2), pages 256-273, March.
    10. Yigezu, Yigezu Atnafe & Mugera, Amin & El-Shater, Tamer & Aw-Hassan, Aden & Piggin, Colin & Haddad, Atef & Khalil, Yaseen & Loss, Stephen, 2018. "Enhancing adoption of agricultural technologies requiring high initial investment among smallholders," Technological Forecasting and Social Change, Elsevier, vol. 134(C), pages 199-206.
    11. Guerzoni, Marco & Jordan, Alexander, 2016. "“Cursed is the ground because of you”: Religion, Ethnicity, and the Adoption of Fertilizers in Rural Ethiopia," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201605, University of Turin.
    12. Adam Salifu & Godwin Seyram Agbemavor Horlu, 2022. "Nonfarm employment and mobility of farmers into different income groups: evidence from rural Ghana," SN Business & Economics, Springer, vol. 2(1), pages 1-25, January.
    13. Martınez, Daniel Morales & Maia, Alexandre Gori & Garcia, Junior Ruiz, 2022. "Spatial diffusion of efficient irrigation systems: a study of S˜ao Paulo, Brazil," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(03), January.
    14. Wondmagegn Tirkaso & Atakelty Hailu, 2022. "Does neighborhood matter? Spatial proximity and farmers’ technical efficiency," Agricultural Economics, International Association of Agricultural Economists, vol. 53(3), pages 374-386, May.
    15. Negash, Martha, 2015. "Drivers of bioenergy crop adoption: evidence from Ethiopia's castor bean contract farming," 2015 Conference, August 9-14, 2015, Milan, Italy 230226, International Association of Agricultural Economists.
    16. Alexander Jordan & Marco Guerzoni, 2021. "“Cursed is the ground because of you”:," Journal of Evolutionary Economics, Springer, vol. 31(3), pages 853-890, July.
    17. repec:lic:licosd:34413 is not listed on IDEAS
    18. María Isabel Palacios-Rangel & Juan Manuel Vargas-Canales & Jorge Aguilar-Ávila & Joaquín Huitzilihuitl Camacho-Vera & Jorge Gustavo Ocampo-Ledesma & Sergio Ernesto Medina-Cuellar, 2018. "Efficiency of small enterprises of protected agriculture in the adoption of innovations in Mexico," Estudios Gerenciales, Universidad Icesi, vol. 34(146), pages 52-62, February.
    19. Kazushi Takahashi & Rie Muraoka & Keijiro Otsuka, 2020. "Technology adoption, impact, and extension in developing countries’ agriculture: A review of the recent literature," Agricultural Economics, International Association of Agricultural Economists, vol. 51(1), pages 31-45, January.
    20. Ignaciuk, A. & Maggio, G. & Mastrorillo, M. & Sitko, N., 2021. "Adapting to high temperatures: evidence on the impacts of sustainable agricultural practices in Uganda," ESA Working Papers 309364, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
    21. Wuepper, David & Sauer, Johannes & Kleemann, Linda, 2014. "Sustainable intensification of pineapple farming in Ghana: Training and complexity," Kiel Working Papers 1973, Kiel Institute for the World Economy (IfW Kiel).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envpol:v:23:y:2021:i:4:d:10.1007_s10018-020-00298-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.