Landslide Displacement Prediction Based on Time-Frequency Analysis and LMD-BiLSTM Model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Yin, Juan & Deng, Zhen & Ines, Amor V.M. & Wu, Junbin & Rasu, Eeswaran, 2020. "Forecast of short-term daily reference evapotranspiration under limited meteorological variables using a hybrid bi-directional long short-term memory model (Bi-LSTM)," Agricultural Water Management, Elsevier, vol. 242(C).
- Ngoc-Lan Huynh, Anh & Deo, Ravinesh C. & Ali, Mumtaz & Abdulla, Shahab & Raj, Nawin, 2021. "Novel short-term solar radiation hybrid model: Long short-term memory network integrated with robust local mean decomposition," Applied Energy, Elsevier, vol. 298(C).
- Xiuzhen Li & Jiming Kong & Zhenyu Wang, 2012. "Landslide displacement prediction based on combining method with optimal weight," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 635-646, March.
- Li, Shaohong & Wu, Na, 2021. "A new grey prediction model and its application in landslide displacement prediction," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
- Yong-gang Zhang & Jun Tang & Zheng-ying He & Junkun Tan & Chao Li, 2021. "A novel displacement prediction method using gated recurrent unit model with time series analysis in the Erdaohe landslide," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 783-813, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zian Lin & Yuanfa Ji & Xiyan Sun, 2023. "Landslide Displacement Prediction Based on CEEMDAN Method and CNN–BiLSTM Model," Sustainability, MDPI, vol. 15(13), pages 1-20, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xinchang Liu & Bolong Liu, 2023. "A Hybrid Time Series Model for Predicting the Displacement of High Slope in the Loess Plateau Region," Sustainability, MDPI, vol. 15(6), pages 1-26, March.
- Zian Lin & Xiyan Sun & Yuanfa Ji, 2022. "Landslide Displacement Prediction Based on Time Series Analysis and Double-BiLSTM Model," IJERPH, MDPI, vol. 19(4), pages 1-23, February.
- Zian Lin & Yuanfa Ji & Xiyan Sun, 2023. "Landslide Displacement Prediction Based on CEEMDAN Method and CNN–BiLSTM Model," Sustainability, MDPI, vol. 15(13), pages 1-20, June.
- Weidong Wang & Jiaying Li & Xia Qu & Zheng Han & Pan Liu, 2019. "Prediction on landslide displacement using a new combination model: a case study of Qinglong landslide in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(3), pages 1121-1139, April.
- Duan, Jikai & Zuo, Hongchao & Bai, Yulong & Chang, Mingheng & Chen, Xiangyue & Wang, Wenpeng & Ma, Lei & Chen, Bolong, 2023. "A multistep short-term solar radiation forecasting model using fully convolutional neural networks and chaotic aquila optimization combining WRF-Solar model results," Energy, Elsevier, vol. 271(C).
- Zhi Chen & Miaoxin Dai & Jie Liu & Wei Jiang, 2024. "Research on Fault Prediction of Nuclear Safety-Class Signal Conditioning Module Based on Improved GRU," Energies, MDPI, vol. 17(16), pages 1-16, August.
- Liulei Bao & Guangcheng Zhang & Xinli Hu & Shuangshuang Wu & Xiangdong Liu, 2021. "Stage Division of Landslide Deformation and Prediction of Critical Sliding Based on Inverse Logistic Function," Energies, MDPI, vol. 14(4), pages 1-24, February.
- Hong Wang & Guangyu Long & Jianxing Liao & Yan Xu & Yan Lv, 2022. "A new hybrid method for establishing point forecasting, interval forecasting, and probabilistic forecasting of landslide displacement," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1479-1505, March.
- Shih-Lun Fang & Yi-Shan Lin & Sheng-Chih Chang & Yi-Lung Chang & Bing-Yun Tsai & Bo-Jein Kuo, 2024. "Using Artificial Intelligence Algorithms to Estimate and Short-Term Forecast the Daily Reference Evapotranspiration with Limited Meteorological Variables," Agriculture, MDPI, vol. 14(4), pages 1-20, March.
- Elizabeth Michael, Neethu & Hasan, Shazia & Al-Durra, Ahmed & Mishra, Manohar, 2022. "Short-term solar irradiance forecasting based on a novel Bayesian optimized deep Long Short-Term Memory neural network," Applied Energy, Elsevier, vol. 324(C).
- Li, Shaohong & Wu, Na, 2021. "A new grey prediction model and its application in landslide displacement prediction," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
- Mehdi Jamei & Mumtaz Ali & Anurag Malik & Ramendra Prasad & Shahab Abdulla & Zaher Mundher Yaseen, 2022. "Forecasting Daily Flood Water Level Using Hybrid Advanced Machine Learning Based Time-Varying Filtered Empirical Mode Decomposition Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4637-4676, September.
- Zhang, Lei & Zhao, Xin & Zhu, Ge & He, Jun & Chen, Jian & Chen, Zhicheng & Traore, Seydou & Liu, Junguo & Singh, Vijay P., 2023. "Short-term daily reference evapotranspiration forecasting using temperature-based deep learning models in different climate zones in China," Agricultural Water Management, Elsevier, vol. 289(C).
- Zheng, Xidong & Chen, Huangbin & Jin, Tao, 2024. "A new optimization approach considering demand response management and multistage energy storage: A novel perspective for Fujian Province," Renewable Energy, Elsevier, vol. 220(C).
- Dong, Juan & Xing, Liwen & Cui, Ningbo & Zhao, Lu & Guo, Li & Wang, Zhihui & Du, Taisheng & Tan, Mingdong & Gong, Daozhi, 2024. "Estimating reference crop evapotranspiration using improved convolutional bidirectional long short-term memory network by multi-head attention mechanism in the four climatic zones of China," Agricultural Water Management, Elsevier, vol. 292(C).
- Yin, Linfei & Cao, Xinghui & Liu, Dongduan, 2023. "Weighted fully-connected regression networks for one-day-ahead hourly photovoltaic power forecasting," Applied Energy, Elsevier, vol. 332(C).
- Valipour, Mohammad & Khoshkam, Helaleh & Bateni, Sayed M. & Jun, Changhyun & Band, Shahab S., 2023. "Hybrid machine learning and deep learning models for multi-step-ahead daily reference evapotranspiration forecasting in different climate regions across the contiguous United States," Agricultural Water Management, Elsevier, vol. 283(C).
- Zheng, Xidong & Zhou, Sheng & Jin, Tao, 2023. "A new machine learning-based approach for cross-region coupled wind-storage integrated systems identification considering electricity demand response and data integration: A new provincial perspective," Energy, Elsevier, vol. 283(C).
- Zhang, Q. & Li, Y.P. & Huang, G.H. & Wang, H. & Li, Y.F. & Shen, Z.Y., 2024. "Multivariate time series convolutional neural networks for long-term agricultural drought prediction under global warming," Agricultural Water Management, Elsevier, vol. 292(C).
- Meysam Alizamir & Kaywan Othman Ahmed & Jalal Shiri & Ahmad Fakheri Fard & Sungwon Kim & Salim Heddam & Ozgur Kisi, 2023. "A New Insight for Daily Solar Radiation Prediction by Meteorological Data Using an Advanced Artificial Intelligence Algorithm: Deep Extreme Learning Machine Integrated with Variational Mode Decomposit," Sustainability, MDPI, vol. 15(14), pages 1-35, July.
More about this item
Keywords
landslide displacement prediction; local mean decomposition; bidirectional long short-term memory; maximal information coefficient;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:13:p:2203-:d:846800. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.