IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v179y2017icp81-91.html
   My bibliography  Save this article

Soil moisture sensor calibration, actual evapotranspiration, and crop coefficients for drip irrigated greenhouse chile peppers

Author

Listed:
  • Sharma, Harmandeep
  • Shukla, Manoj K.
  • Bosland, Paul W.
  • Steiner, Robert

Abstract

Limited water supplies in arid regions put constraints on agriculture. In arid New Mexico, greenhouse chile pepper production has the potential for water and nutrient savings. The objectives of this study were to (1) compare two capacitance sensors – (Hydra probes and 5TM) and one TDR CS616 sensor, (2) compute actual evapotranspiration (ETa) for drip-irrigated chile peppers for three water treatments, and (3) develop new crop coefficients (Kc) for the three growing seasons in a greenhouse study. Three water treatments were (1) control where water was applied near the surface using two drip emitters, (2) partial root zone drying vertical (PRDv) where subsurface irrigation was applied at 20cm depth from soil surface, and (3) partial root zone drying compartment (PRDc) where roots were divided into two compartments and irrigation were switched between compartments after 15days. Sensor-generated volumetric water contents (θ) were correlated with the gravimetrically determined θ, and the new calibration coefficients improved the precision of θ estimates. From 2011 onward, irrigation amounts were adjusted to minimize deep percolation, and about 30% less water was applied in 2014 as compared to the 2011 growing season but no significant differences were observed in transpiration rate and leaf temperature. The ratio of intercellular to ambient CO2 concentrations (Ci/Ca) was significantly correlated to transpiration rate and vapor pressure deficit in 2014 (P<0.05). ETa obtained from water balance and reference ET (ETr) from Penman-Monteith developed the Kc for drip-irrigated greenhouse chile peppers for three growing seasons. The maximum values of Kc were about 1.4 during 2013 and 1.2 during 2014. The 2011 growing season was shorter and the maximum Kc were closer to one. Crop coefficients for greenhouse grown chile peppers varied with growing seasons and irrigation treatment. Irrigation scheduling can be done based on the soil moisture or Kc for the known growing season. This study demonstrated the water saving potential of PRD.

Suggested Citation

  • Sharma, Harmandeep & Shukla, Manoj K. & Bosland, Paul W. & Steiner, Robert, 2017. "Soil moisture sensor calibration, actual evapotranspiration, and crop coefficients for drip irrigated greenhouse chile peppers," Agricultural Water Management, Elsevier, vol. 179(C), pages 81-91.
  • Handle: RePEc:eee:agiwat:v:179:y:2017:i:c:p:81-91
    DOI: 10.1016/j.agwat.2016.07.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377416302487
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.07.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Orgaz, F. & Fernandez, M.D. & Bonachela, S. & Gallardo, M. & Fereres, E., 2005. "Evapotranspiration of horticultural crops in an unheated plastic greenhouse," Agricultural Water Management, Elsevier, vol. 72(2), pages 81-96, March.
    2. C.-Y. Xu & V. Singh, 2002. "Cross Comparison of Empirical Equations for Calculating Potential Evapotranspiration with Data from Switzerland," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 16(3), pages 197-219, June.
    3. Sentelhas, Paulo C. & Gillespie, Terry J. & Santos, Eduardo A., 2010. "Evaluation of FAO Penman-Monteith and alternative methods for estimating reference evapotranspiration with missing data in Southern Ontario, Canada," Agricultural Water Management, Elsevier, vol. 97(5), pages 635-644, May.
    4. Kang, Shaozhong & Liang, Zongsuo & Pan, Yinhua & Shi, Peize & Zhang, Jianhua, 2000. "Alternate furrow irrigation for maize production in an arid area," Agricultural Water Management, Elsevier, vol. 45(3), pages 267-274, August.
    5. Sharma, Parmodh & Shukla, Manoj K. & Sammis, Theodore W. & Steiner, Robert L. & Mexal, John G., 2012. "Nitrate-nitrogen leaching from three specialty crops of New Mexico under furrow irrigation system," Agricultural Water Management, Elsevier, vol. 109(C), pages 71-80.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Zhe & Liu, Shengyao & Jia, Songnan & Du, Fenghuan & Qi, Hao & Li, Jiaxi & Song, Xinyue & Zhao, Nan & Nie, Lanchun & Fan, Fengcui, 2021. "Precise soil water control using a negative pressure irrigation system to improve the water productivity of greenhouse watermelon," Agricultural Water Management, Elsevier, vol. 258(C).
    2. França, Ana Carolina Ferreira & Coelho, Rubens Duarte & da Silva Gundim, Alice & de Oliveira Costa, Jéfferson & Quiloango-Chimarro, Carlos Alberto, 2024. "Effects of different irrigation scheduling methods on physiology, yield, and irrigation water productivity of soybean varieties," Agricultural Water Management, Elsevier, vol. 293(C).
    3. Libardi, Luís Guilherme Polizel & de Faria, Rogério Teixeira & Dalri, Alexandre Barcellos & de Souza Rolim, Glauco & Palaretti, Luiz Fabiano & Coelho, Anderson Prates & Martins, Izabela Paiva, 2019. "Evapotranspiration and crop coefficient (Kc) of pre-sprouted sugarcane plantlets for greenhouse irrigation management," Agricultural Water Management, Elsevier, vol. 212(C), pages 306-316.
    4. Hassani, Yousef & Hashemy Shahdany, Seied Mehdy & Maestre, J.M. & Zahraie, Banafsheh & Ghorbani, Mohammad & Henneberry, Shida Rastegari & Kulshreshtha, Suren N., 2019. "An economic-operational framework for optimum agricultural water distribution in irrigation districts without water marketing," Agricultural Water Management, Elsevier, vol. 221(C), pages 348-361.
    5. Theodora Karanisa & Yasmine Achour & Ahmed Ouammi & Sami Sayadi, 2022. "Smart greenhouses as the path towards precision agriculture in the food-energy and water nexus: case study of Qatar," Environment Systems and Decisions, Springer, vol. 42(4), pages 521-546, December.
    6. Iftikhar Ahmed Saeed & Wang Minjuan & Ji Qiang & Shi Qinglan & Zheng Li Hua & Liu Xinliang & Gao Wanlin, 2024. "Integrated Sensor for Estimating in situ Soil Water Content in Vertical Profile," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 10(10), pages 1-53, April.
    7. Hajdu, Istvan & Yule, Ian & Bretherton, Mike & Singh, Ranvir & Hedley, Carolyn, 2019. "Field performance assessment and calibration of multi-depth AquaCheck capacitance-based soil moisture probes under permanent pasture for hill country soils," Agricultural Water Management, Elsevier, vol. 217(C), pages 332-345.
    8. Yost, Jenifer L. & Huang, Jingyi & Hartemink, Alfred E., 2019. "Spatial-temporal analysis of soil water storage and deep drainage under irrigated potatoes in the Central Sands of Wisconsin, USA," Agricultural Water Management, Elsevier, vol. 217(C), pages 226-235.
    9. Angel Triana & Alfonso Llanderal & Pedro García-Caparrós & Manuel Donoso & Rafael Jiménez-Lao & John Eloy Franco Rodríguez & María Teresa Lao, 2024. "Preliminary Mapping of the Spatial Variability in the Microclimate in Tropical Greenhouses: A Pepper Crop Perspective," Agriculture, MDPI, vol. 14(11), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiang, Keyu & Li, Yi & Horton, Robert & Feng, Hao, 2020. "Similarity and difference of potential evapotranspiration and reference crop evapotranspiration – a review," Agricultural Water Management, Elsevier, vol. 232(C).
    2. Martí, Pau & López-Urrea, Ramón & Mancha, Luis A. & González-Altozano, Pablo & Román, Armand, 2024. "Seasonal assessment of the grass reference evapotranspiration estimation from limited inputs using different calibrating time windows and lysimeter benchmarks," Agricultural Water Management, Elsevier, vol. 300(C).
    3. Singh Rawat, Kishan & Kumar Singh, Sudhir & Bala, Anju & Szabó, Szilárd, 2019. "Estimation of crop evapotranspiration through spatial distributed crop coefficient in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 213(C), pages 922-933.
    4. Yin, Juan & Deng, Zhen & Ines, Amor V.M. & Wu, Junbin & Rasu, Eeswaran, 2020. "Forecast of short-term daily reference evapotranspiration under limited meteorological variables using a hybrid bi-directional long short-term memory model (Bi-LSTM)," Agricultural Water Management, Elsevier, vol. 242(C).
    5. Paweł Bogawski & Ewa Bednorz, 2014. "Comparison and Validation of Selected Evapotranspiration Models for Conditions in Poland (Central Europe)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 5021-5038, November.
    6. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    7. Kifle, Mulubrehan & Gebremicael, T.G. & Girmay, Abbadi & Gebremedihin, Teferi, 2017. "Effect of surge flow and alternate irrigation on the irrigation efficiency and water productivity of onion in the semi-arid areas of North Ethiopia," Agricultural Water Management, Elsevier, vol. 187(C), pages 69-76.
    8. Choudhury, B.U. & Singh, Anil Kumar & Pradhan, S., 2013. "Estimation of crop coefficients of dry-seeded irrigated rice–wheat rotation on raised beds by field water balance method in the Indo-Gangetic plains, India," Agricultural Water Management, Elsevier, vol. 123(C), pages 20-31.
    9. Du, Taisheng & Kang, Shaozhong & Zhang, Jianhua & Li, Fusheng & Yan, Boyuan, 2008. "Water use efficiency and fruit quality of table grape under alternate partial root-zone drip irrigation," Agricultural Water Management, Elsevier, vol. 95(6), pages 659-668, June.
    10. Zhang, Tibin & Zou, Yufeng & Kisekka, Isaya & Biswas, Asim & Cai, Huanjie, 2021. "Comparison of different irrigation methods to synergistically improve maize’s yield, water productivity and economic benefits in an arid irrigation area," Agricultural Water Management, Elsevier, vol. 243(C).
    11. Gallardo, M. & Giménez, C. & Martínez-Gaitán, C. & Stöckle, C.O. & Thompson, R.B. & Granados, M.R., 2011. "Evaluation of the VegSyst model with muskmelon to simulate crop growth, nitrogen uptake and evapotranspiration," Agricultural Water Management, Elsevier, vol. 101(1), pages 107-117.
    12. Chang, Jie & Wu, Xu & Liu, Anqin & Wang, Yan & Xu, Bin & Yang, Wu & Meyerson, Laura A. & Gu, Baojing & Peng, Changhui & Ge, Ying, 2011. "Assessment of net ecosystem services of plastic greenhouse vegetable cultivation in China," Ecological Economics, Elsevier, vol. 70(4), pages 740-748, February.
    13. M. Mekonnen & A. Hoekstra & R. Becht, 2012. "Mitigating the Water Footprint of Export Cut Flowers from the Lake Naivasha Basin, Kenya," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3725-3742, October.
    14. Cabrera Corral, Francisco Javier & Bonachela Castaño, Santiago & Fernández Fernández, María Dolores & Granados García, María Rosa & López Hernández, Juan Carlos, 2016. "Lysimetry methods for monitoring soil solution electrical conductivity and nutrient concentration in greenhouse tomato crops," Agricultural Water Management, Elsevier, vol. 178(C), pages 171-179.
    15. Slamini, Maryam & Sbaa, Mohamed & Arabi, Mourad & Darmous, Ahmed, 2022. "Review on Partial Root-zone Drying irrigation: Impact on crop yield, soil and water pollution," Agricultural Water Management, Elsevier, vol. 271(C).
    16. Gavilán, Pedro & Ruiz, Natividad & Lozano, David, 2015. "Daily forecasting of reference and strawberry crop evapotranspiration in greenhouses in a Mediterranean climate based on solar radiation estimates," Agricultural Water Management, Elsevier, vol. 159(C), pages 307-317.
    17. Dean C. J. Rice & Rupp Carriveau & David S. -K. Ting & Mo’tamad H. Bata, 2017. "Evaluation of Crop to Crop Water Demand Forecasting: Tomatoes and Bell Peppers Grown in a Commercial Greenhouse," Agriculture, MDPI, vol. 7(12), pages 1-14, December.
    18. Helge Bormann, 2011. "Sensitivity analysis of 18 different potential evapotranspiration models to observed climatic change at German climate stations," Climatic Change, Springer, vol. 104(3), pages 729-753, February.
    19. Aouissi, Jalel & Benabdallah, Sihem & Lili Chabaâne, Zohra & Cudennec, Christophe, 2016. "Evaluation of potential evapotranspiration assessment methods for hydrological modelling with SWAT—Application in data-scarce rural Tunisia," Agricultural Water Management, Elsevier, vol. 174(C), pages 39-51.
    20. Dari, Jacopo & Quintana-Seguí, Pere & Morbidelli, Renato & Saltalippi, Carla & Flammini, Alessia & Giugliarelli, Elena & Escorihuela, María José & Stefan, Vivien & Brocca, Luca, 2022. "Irrigation estimates from space: Implementation of different approaches to model the evapotranspiration contribution within a soil-moisture-based inversion algorithm," Agricultural Water Management, Elsevier, vol. 265(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:179:y:2017:i:c:p:81-91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.