IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v241y2020ics0378377420304017.html
   My bibliography  Save this article

Alternate wetting and drying: A water-saving and ecofriendly rice production system

Author

Listed:
  • Ishfaq, Muhammad
  • Farooq, Muhammad
  • Zulfiqar, Usman
  • Hussain, Saddam
  • Akbar, Nadeem
  • Nawaz, Ahmad
  • Anjum, Shakeel Ahmad

Abstract

Global warming and declining water resources are threatening the sustainability of rice production and global food security. Conventional continuously flooded system (CF) of rice production is a major contributor to rice production but it requires a huge amount of water input and poses a severe threat to the ecosystem due to emission of greenhouse gases (GHGs) and accumulation of heavy metals [e.g., arsenic (As) and mercury (Hg)] in the rice grains. The declining soil health, increasing micronutrient deficiencies, and declining organic matter are are also threatening the long term sustainability of the conventional rice production system. In this scenario, alternate wetting and drying (AWD) irrigation system is a promising, water-saving, economically viable, and ecofriendly alternative to CF. In this review, we discuss the influence of AWD on nutrient dynamics, rice growth, and yield formation, grain quality, water use efficiency, emission of GHGs, and economics in comparison with the CF rice production system. Overall, AWD irrigation technique can reduce the total water inputs (25–70 %), CH4 emission (11–95 %), As (13–90 %), and Hg (5–90 %) in rice grains while maintaining similar or better paddy yield (10−20%) than the CF depending upon weather conditions, soil type, degree of dryness, crop duration and crop growth stage. The mild-AWD improves the rice grain quality by reducing the kernel chalkiness (40 %) and increasing the head rice recovery (6%) and concentration of grain micronutrients (like zinc). Being economically viable and environment friendly, AWD system is being adopted in all major rice producing regions but not widely, possibly due to complicated inter-relations of agricultural and socioeconomic systems, and lack of institutional support.

Suggested Citation

  • Ishfaq, Muhammad & Farooq, Muhammad & Zulfiqar, Usman & Hussain, Saddam & Akbar, Nadeem & Nawaz, Ahmad & Anjum, Shakeel Ahmad, 2020. "Alternate wetting and drying: A water-saving and ecofriendly rice production system," Agricultural Water Management, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:agiwat:v:241:y:2020:i:c:s0378377420304017
    DOI: 10.1016/j.agwat.2020.106363
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377420304017
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106363?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bouman, B. A.M. & Feng, Liping & Tuong, T.P. & Lu, Guoan & Wang, Huaqi & Feng, Yuehua, 2007. "Exploring options to grow rice using less water in northern China using a modelling approach: II. Quantifying yield, water balance components, and water productivity," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 23-33, March.
    2. Liang, Kaiming & Zhong, Xuhua & Huang, Nongrong & Lampayan, Rubenito M. & Pan, Junfeng & Tian, Ka & Liu, Yanzhuo, 2016. "Grain yield, water productivity and CH4 emission of irrigated rice in response to water management in south China," Agricultural Water Management, Elsevier, vol. 163(C), pages 319-331.
    3. Belder, P. & Bouman, B. A. M. & Cabangon, R. & Guoan, Lu & Quilang, E. J. P. & Yuanhua, Li & Spiertz, J. H. J. & Tuong, T. P., 2004. "Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia," Agricultural Water Management, Elsevier, vol. 65(3), pages 193-210, March.
    4. Islam, S.M. Mofijul & Gaihre, Yam Kanta & Biswas, Jatish Chandra & Jahan, Md. Sarwar & Singh, Upendra & Adhikary, Sanjoy Kumar & Satter, M. Abdus & Saleque, M.A., 2018. "Different nitrogen rates and methods of application for dry season rice cultivation with alternate wetting and drying irrigation: Fate of nitrogen and grain yield," Agricultural Water Management, Elsevier, vol. 196(C), pages 144-153.
    5. Anbumozhi, V. & Yamaji, E. & Tabuchi, T., 1998. "Rice crop growth and yield as influenced by changes in ponding water depth, water regime and fertigation level," Agricultural Water Management, Elsevier, vol. 37(3), pages 241-253, September.
    6. Tan, Xuezhi & Shao, Dongguo & Liu, Huanhuan, 2014. "Simulating soil water regime in lowland paddy fields under different water managements using HYDRUS-1D," Agricultural Water Management, Elsevier, vol. 132(C), pages 69-78.
    7. Qin, Jiangtao & Hu, Feng & Zhang, Bin & Wei, Zhenggui & Li, Huixin, 2006. "Role of straw mulching in non-continuously flooded rice cultivation," Agricultural Water Management, Elsevier, vol. 83(3), pages 252-260, June.
    8. Alauddin, Mohammad & Rashid Sarker, Md. Abdur & Islam, Zeenatul & Tisdell, Clement, 2020. "Adoption of alternate wetting and drying (AWD) irrigation as a water-saving technology in Bangladesh: Economic and environmental considerations," Land Use Policy, Elsevier, vol. 91(C).
    9. Rejesus, Roderick M. & Martin, Adrienne M. & Gypmantasiri, Phrek (ed.), 2013. "Meta-Impact Assessment of the Irrigated Rice Research Consortium," IRRI Books, International Rice Research Institute (IRRI), number 164460.
    10. Yang, Changming & Yang, Linzhang & Yang, Yongxing & Ouyang, Zhu, 2004. "Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils," Agricultural Water Management, Elsevier, vol. 70(1), pages 67-81, October.
    11. Tabbal, D. F. & Bouman, B. A. M. & Bhuiyan, S. I. & Sibayan, E. B. & Sattar, M. A., 2002. "On-farm strategies for reducing water input in irrigated rice; case studies in the Philippines," Agricultural Water Management, Elsevier, vol. 56(2), pages 93-112, July.
    12. Stoop, Willem A. & Uphoff, Norman & Kassam, Amir, 2002. "A review of agricultural research issues raised by the system of rice intensification (SRI) from Madagascar: opportunities for improving farming systems for resource-poor farmers," Agricultural Systems, Elsevier, vol. 71(3), pages 249-274, March.
    13. Bouman, B. A. M. & Tuong, T. P., 2001. "Field water management to save water and increase its productivity in irrigated lowland rice," Agricultural Water Management, Elsevier, vol. 49(1), pages 11-30, July.
    14. Ngonidzashe Chirinda & Laura Arenas & Sandra Loaiza & Catalina Trujillo & Maria Katto & Paula Chaparro & Jonathan Nuñez & Jacobo Arango & Deissy Martinez-Baron & Ana María Loboguerrero & Luis A. Becer, 2017. "Novel Technological and Management Options for Accelerating Transformational Changes in Rice and Livestock Systems," Sustainability, MDPI, vol. 9(11), pages 1-16, October.
    15. Oliver, M.M.H & Talukder, M.S.U & Ahmed, M., 2008. "Alternate wetting and drying irrigation for rice cultivation," Journal of the Bangladesh Agricultural University, Bangladesh Agricultural University Research System (BAURES), vol. 6.
    16. Li, Sen & Zuo, Qiang & Jin, Xinxin & Ma, Wenwen & Shi, Jianchu & Ben-Gal, Alon, 2018. "The physiological processes and mechanisms for superior water productivity of a popular ground cover rice production system," Agricultural Water Management, Elsevier, vol. 201(C), pages 11-20.
    17. Feng, Liping & Bouman, B. A.M. & Tuong, T.P. & Cabangon, R.J. & Li, Yalong & Lu, Guoan & Feng, Yuehua, 2007. "Exploring options to grow rice using less water in northern China using a modelling approach: I. Field experiments and model evaluation," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 1-13, March.
    18. Massey, Joseph H. & Walker, Tim W. & Anders, Merle M. & Smith, M. Cade & Avila, Luis A., 2014. "Farmer adaptation of intermittent flooding using multiple-inlet rice irrigation in Mississippi," Agricultural Water Management, Elsevier, vol. 146(C), pages 297-304.
    19. Darzi-Naftchali, Abdullah & Ritzema, Henk & Karandish, Fatemeh & Mokhtassi-Bidgoli, Ali & Ghasemi-Nasr, Mohammad, 2017. "Alternate wetting and drying for different subsurface drainage systems to improve paddy yield and water productivity in Iran," Agricultural Water Management, Elsevier, vol. 193(C), pages 221-231.
    20. Tuong, T. P. & Bouman, B. A. M., 2003. "Rice production in water-scarce environments," IWMI Books, Reports H032635, International Water Management Institute.
    21. Mohd Zain, Nurul Amalina & Ismail, Mohd Razi, 2016. "Effects of potassium rates and types on growth, leaf gas exchange and biochemical changes in rice (Oryza sativa) planted under cyclic water stress," Agricultural Water Management, Elsevier, vol. 164(P1), pages 83-90.
    22. Tan, Xuezhi & Shao, Dongguo & Gu, Wenquan & Liu, Huanhuan, 2015. "Field analysis of water and nitrogen fate in lowland paddy fields under different water managements using HYDRUS-1D," Agricultural Water Management, Elsevier, vol. 150(C), pages 67-80.
    23. Bouman, B.A.M. & Peng, S. & Castaneda, A.R. & Visperas, R.M., 2005. "Yield and water use of irrigated tropical aerobic rice systems," Agricultural Water Management, Elsevier, vol. 74(2), pages 87-105, June.
    24. Rejesus, Roderick M. & Palis, Florencia G. & Rodriguez, Divina Gracia P. & Lampayan, Ruben M. & Bouman, Bas A.M., 2011. "Impact of the alternate wetting and drying (AWD) water-saving irrigation technique: Evidence from rice producers in the Philippines," Food Policy, Elsevier, vol. 36(2), pages 280-288, April.
    25. Wang, Huanyuan & Ju, Xiaotang & Wei, Yongping & Li, Baoguo & Zhao, Lulu & Hu, Kelin, 2010. "Simulation of bromide and nitrate leaching under heavy rainfall and high-intensity irrigation rates in North China Plain," Agricultural Water Management, Elsevier, vol. 97(10), pages 1646-1654, October.
    26. Van den Berg, M. Marrit & Hengsdijk, Huib & Wolf, Joost & Van Ittersum, Martin K. & Guanghuo, Wang & Roetter, Reimund P., 2007. "The impact of increasing farm size and mechanization on rural income and rice production in Zhejiang province, China," Agricultural Systems, Elsevier, vol. 94(3), pages 841-850, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi, Suting & Yang, Shihong & Lin, Xiuyan & Hu, Jiazhen & Jiang, Zewei & Xu, Yi, 2023. "The long-term effectiveness of biochar in increasing phosphorus availability and reducing its release risk to the environment in water-saving irrigated paddy fields," Agricultural Water Management, Elsevier, vol. 282(C).
    2. Li, Yinghao & Zheng, Junlin & Wu, Qi & Gong, Xingmei & Zhang, Zhongxiao & Chen, Yinglong & Chen, Taotao & Siddique, Kadambot H.M. & Chi, Daocai, 2022. "Zeolite increases paddy soil potassium fixation, partial factor productivity, and potassium balance under alternate wetting and drying irrigation," Agricultural Water Management, Elsevier, vol. 260(C).
    3. Wei, Jun & Cui, Yuanlai & Zhou, Sihang & Luo, Yufeng, 2022. "Regional water-saving potential calculation method for paddy rice based on remote sensing," Agricultural Water Management, Elsevier, vol. 267(C).
    4. Liu, Lianhua & Ouyang, Wei & Wang, Yidi & Lian, Zhongmin & Pan, Junting & Liu, Hongbin & Chen, Jingrui & Niu, Shiwei, 2023. "Paddy water managements for diffuse nitrogen and phosphorus pollution control in China: A comprehensive review and emerging prospects," Agricultural Water Management, Elsevier, vol. 277(C).
    5. Chen, Peng & Xu, Junzeng & Zhang, Zhongxue & Nie, Tangzhe & Wang, Kechun & Guo, Hang, 2022. "Where the straw-derived nitrogen gone in paddy field subjected to different irrigation regimes and straw placement depths? Evidence from 15N labeling," Agricultural Water Management, Elsevier, vol. 273(C).
    6. Liu, Chang & Chen, Taotao & Zhang, Feng & Han, Hongwei & Yi, Benji & Chi, Daocai, 2024. "Soil carbon sequestration increment and carbon-negative emissions in alternate wetting and drying paddy ecosystems through biochar incorporation," Agricultural Water Management, Elsevier, vol. 300(C).
    7. Li, Jinwen & Qian, Xiaoyong & Zhang, Min & Fu, Kan & Zhu, Wenjun & Zhao, Qingjie & Shen, Genxiang & Wang, Zhenqi & Chen, Xiaohua, 2021. "Methodology for studying nitrogen loss from paddy fields under alternate wetting and drying irrigation in the lower reaches of the Yangtze River in China," Agricultural Water Management, Elsevier, vol. 254(C).
    8. Ariani, Miranti & Hanudin, Eko & Haryono, Eko, 2022. "The effect of contrasting soil textures on the efficiency of alternate wetting-drying to reduce water use and global warming potential," Agricultural Water Management, Elsevier, vol. 274(C).
    9. Wenjiang Jing & Hao Wu & Hanzhu Gu & Zhilin Xiao & Weilu Wang & Weiyang Zhang & Junfei Gu & Lijun Liu & Zhiqin Wang & Jianhua Zhang & Jianchang Yang & Hao Zhang, 2022. "Response of Grain Yield and Water Use Efficiency to Irrigation Regimes during Mid-Season indica Rice Genotype Improvement," Agriculture, MDPI, vol. 12(10), pages 1-18, October.
    10. Yan, Jun & Wu, Qixia & Qi, Dongliang & Zhu, Jianqiang, 2022. "Rice yield, water productivity, and nitrogen use efficiency responses to nitrogen management strategies under supplementary irrigation for rain-fed rice cultivation," Agricultural Water Management, Elsevier, vol. 263(C).
    11. Liang, Kaiming & Zhong, Xuhua & Fu, Youqiang & Hu, Xiangyu & Li, Meijuan & Pan, Junfeng & Liu, Yanzhuo & Hu, Rui & Ye, Qunhuan, 2023. "Mitigation of environmental N pollution and greenhouse gas emission from double rice cropping system with a new alternate wetting and drying irrigation regime coupled with optimized N fertilization in," Agricultural Water Management, Elsevier, vol. 282(C).
    12. Zeng, Yuan-Fu & Chen, Ching-Tien & Lin, Gwo-Fong, 2023. "Practical application of an intelligent irrigation system to rice paddies in Taiwan," Agricultural Water Management, Elsevier, vol. 280(C).
    13. Hua, Keji & He, Jun & Liao, Bin & He, Tianzhong & Yang, Peng & Zhang, Lei, 2023. "Multi-objective decision-making for efficient utilization of water and fertilizer in paddy fields: A case study in Southern China," Agricultural Water Management, Elsevier, vol. 289(C).
    14. Han, Huanhao & Gao, Rong & Cui, Yuanlai & Gu, Shixiang, 2022. "A semi-empirical semi-process model of ammonia volatilization from paddy fields under different irrigation modes and urea application regimes," Agricultural Water Management, Elsevier, vol. 272(C).
    15. Martínez-Eixarch, Maite & Alcaraz, Carles & Guàrdia, Mercè & Català-Forner, Mar & Bertomeu, Andrea & Monaco, Stefano & Cochrane, Nicole & Oliver, Viktoria & Teh, Yit Arn & Courtois, Brigitte & Price, , 2021. "Multiple environmental benefits of alternate wetting and drying irrigation system with limited yield impact on European rice cultivation: The Ebre Delta case," Agricultural Water Management, Elsevier, vol. 258(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carracelas, G. & Hornbuckle, J. & Rosas, J. & Roel, A., 2019. "Irrigation management strategies to increase water productivity in Oryza sativa (rice) in Uruguay," Agricultural Water Management, Elsevier, vol. 222(C), pages 161-172.
    2. Takeda, Naoya & López-Galvis, Lorena & Pineda, Dario & Castilla, Armando & Takahashi, Taro & Fukuda, Shinji & Okada, Kensuke, 2019. "Evaluation of water dynamics of contour-levee irrigation system in sloped rice fields in Colombia," Agricultural Water Management, Elsevier, vol. 217(C), pages 107-118.
    3. Senthilkumar, K. & Bindraban, P.S. & Thiyagarajan, T.M. & de Ridder, N. & Giller, K.E., 2008. "Modified rice cultivation in Tamil Nadu, India: Yield gains and farmers' (lack of) acceptance," Agricultural Systems, Elsevier, vol. 98(2), pages 82-94, September.
    4. Liang, Kaiming & Zhong, Xuhua & Huang, Nongrong & Lampayan, Rubenito M. & Pan, Junfeng & Tian, Ka & Liu, Yanzhuo, 2016. "Grain yield, water productivity and CH4 emission of irrigated rice in response to water management in south China," Agricultural Water Management, Elsevier, vol. 163(C), pages 319-331.
    5. Patel, D.P. & Das, Anup & Munda, G.C. & Ghosh, P.K. & Bordoloi, Juri Sandhya & Kumar, Manoj, 2010. "Evaluation of yield and physiological attributes of high-yielding rice varieties under aerobic and flood-irrigated management practices in mid-hills ecosystem," Agricultural Water Management, Elsevier, vol. 97(9), pages 1269-1276, September.
    6. Jalota, S.K. & Singh, K.B. & Chahal, G.B.S. & Gupta, R.K. & Chakraborty, Somsubhra & Sood, Anil & Ray, S.S. & Panigrahy, S., 2009. "Integrated effect of transplanting date, cultivar and irrigation on yield, water saving and water productivity of rice (Oryza sativa L.) in Indian Punjab: Field and simulation study," Agricultural Water Management, Elsevier, vol. 96(7), pages 1096-1104, July.
    7. Belder, P. & Bouman, B. A.M. & Spiertz, J.H.J., 2007. "Exploring options for water savings in lowland rice using a modelling approach," Agricultural Systems, Elsevier, vol. 92(1-3), pages 91-114, January.
    8. Thakur, Amod K. & Mohanty, Rajeeb K. & Singh, Rajbir & Patil, Dhiraj U., 2015. "Enhancing water and cropping productivity through Integrated System of Rice Intensification (ISRI) with aquaculture and horticulture under rainfed conditions," Agricultural Water Management, Elsevier, vol. 161(C), pages 65-76.
    9. Dang, T. & Pedroso, R. & Laux, P. & Kunstmann, H., 2018. "Development of an integrated hydrological-irrigation optimization modeling system for a typical rice irrigation scheme in Central Vietnam," Agricultural Water Management, Elsevier, vol. 208(C), pages 193-203.
    10. Tan, Xuezhi & Shao, Dongguo & Gu, Wenquan & Liu, Huanhuan, 2015. "Field analysis of water and nitrogen fate in lowland paddy fields under different water managements using HYDRUS-1D," Agricultural Water Management, Elsevier, vol. 150(C), pages 67-80.
    11. Cesari de Maria, Sandra & Rienzner, Michele & Facchi, Arianna & Chiaradia, Enrico Antonio & Romani, Marco & Gandolfi, Claudio, 2016. "Water balance implications of switching from continuous submergence to flush irrigation in a rice-growing district," Agricultural Water Management, Elsevier, vol. 171(C), pages 108-119.
    12. Thakur, Amod K. & Mandal, Krishna G. & Mohanty, Rajeeb K. & Ambast, Sunil K., 2018. "Rice root growth, photosynthesis, yield and water productivity improvements through modifying cultivation practices and water management," Agricultural Water Management, Elsevier, vol. 206(C), pages 67-77.
    13. Alauddin, Mohammad & Rashid Sarker, Md. Abdur & Islam, Zeenatul & Tisdell, Clement, 2020. "Adoption of alternate wetting and drying (AWD) irrigation as a water-saving technology in Bangladesh: Economic and environmental considerations," Land Use Policy, Elsevier, vol. 91(C).
    14. Tan, Xuezhi & Shao, Dongguo & Liu, Huanhuan, 2014. "Simulating soil water regime in lowland paddy fields under different water managements using HYDRUS-1D," Agricultural Water Management, Elsevier, vol. 132(C), pages 69-78.
    15. Darzi-Naftchali, Abdullah & Karandish, Fatemeh & Šimůnek, Jiří, 2018. "Numerical modeling of soil water dynamics in subsurface drained paddies with midseason drainage or alternate wetting and drying management," Agricultural Water Management, Elsevier, vol. 197(C), pages 67-78.
    16. Manel Ben Hassen & Federica Monaco & Arianna Facchi & Marco Romani & Giampiero Valè & Guido Sali, 2017. "Economic Performance of Traditional and Modern Rice Varieties under Different Water Management Systems," Sustainability, MDPI, vol. 9(3), pages 1-10, February.
    17. Ahmad Numery Ashfaqul Haque & Md. Kamal Uddin & Muhammad Firdaus Sulaiman & Adibah Mohd Amin & Mahmud Hossain & Zakaria M. Solaiman & Azharuddin Abd Aziz & Mehnaz Mosharrof, 2022. "Combined Use of Biochar with 15 Nitrogen Labelled Urea Increases Rice Yield, N Use Efficiency and Fertilizer N Recovery under Water-Saving Irrigation," Sustainability, MDPI, vol. 14(13), pages 1-21, June.
    18. Zheng, Junlin & Chen, Taotao & Wu, Qi & Yu, Jianming & Chen, Wei & Chen, Yinglong & Siddique, Kadambot H.M. & Meng, Weizhong & Chi, Daocai & Xia, Guimin, 2018. "Effect of zeolite application on phenology, grain yield and grain quality in rice under water stress," Agricultural Water Management, Elsevier, vol. 206(C), pages 241-251.
    19. Bouman, B.A.M. & Peng, S. & Castaneda, A.R. & Visperas, R.M., 2005. "Yield and water use of irrigated tropical aerobic rice systems," Agricultural Water Management, Elsevier, vol. 74(2), pages 87-105, June.
    20. Hafeez, M.M. & Bouman, B.A.M. & Van de Giesen, N. & Vlek, P., 2007. "Scale effects on water use and water productivity in a rice-based irrigation system (UPRIIS) in the Philippines," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 81-89, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:241:y:2020:i:c:s0378377420304017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.