IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v272y2022ics0378377422003882.html
   My bibliography  Save this article

A semi-empirical semi-process model of ammonia volatilization from paddy fields under different irrigation modes and urea application regimes

Author

Listed:
  • Han, Huanhao
  • Gao, Rong
  • Cui, Yuanlai
  • Gu, Shixiang

Abstract

Both empirical models and process-based models of ammonia (NH3) volatilization simulation in paddy field have some disadvantages. This work describes a semi-empirical semi-process model, which combines the simplicity of empirical models with the precision of process-based models, and its combinatorial structure is sufficient for reproducing the characteristic course of NH3 volatilization in paddy fields under different irrigation modes and urea application regimes over time. A dataset consisting of seven rice seasons across three locations was used for model development. Performance indexes showed the model is good (R2 values ranged from 0.67 to 0.94). The influence of air temperature and wind speed on NH3 volatilization was not as great as our conventional understanding, and soil temperature was a more accurate indicator than air temperature for model development. Model performance was better where the less urea splits and the higher urea rate, but there was no significant difference between alternate wetting and drying (AWD) irrigation mode (average values of R2, IA, NSI, and RMSE were 0.82, 0.94, 0.96, and 0.53 kg ha-1 d-1) and flooding irrigation (FI) mode (average values of R2, IA, NSI, and RMSE were 0.86, 0.94, 0.96, and 0.58 kg ha-1 d-1). The ammonium nitrogen (NH4+-N) concentration and pH of surface water and soil water in paddy fields had the greatest impact on NH3 volatilization, and they were mainly related to the amount of urea applied. Splitting the urea application and delaying the first urea application are the fundamental countermeasures to reduce NH3 volatilization. The magnitude of developed model performance varied among rice cropping systems, irrigation modes, urea application regimes, and climatic regions, highlighting the need to understand why measured NH3 volatilization varies among locations. The new model may be a useful tool for predicting fertilizer efficiency of paddy fields applied urea, assessing NH3 volatilization factors, and reducing emission.

Suggested Citation

  • Han, Huanhao & Gao, Rong & Cui, Yuanlai & Gu, Shixiang, 2022. "A semi-empirical semi-process model of ammonia volatilization from paddy fields under different irrigation modes and urea application regimes," Agricultural Water Management, Elsevier, vol. 272(C).
  • Handle: RePEc:eee:agiwat:v:272:y:2022:i:c:s0378377422003882
    DOI: 10.1016/j.agwat.2022.107841
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422003882
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107841?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Junzeng & Liu, Xiaoyin & Yang, Shihong & Qi, Zhiming & Wang, Yijiang, 2017. "Modeling rice evapotranspiration under water-saving irrigation by calibrating canopy resistance model parameters in the Penman-Monteith equation," Agricultural Water Management, Elsevier, vol. 182(C), pages 55-66.
    2. Gilhespy, Sarah L. & Anthony, Steven & Cardenas, Laura & Chadwick, David & del Prado, Agustin & Li, Changsheng & Misselbrook, Thomas & Rees, Robert M. & Salas, William & Sanz-Cobena, Alberto & Smith, , 2014. "First 20 years of DNDC (DeNitrification DeComposition): Model evolution," Ecological Modelling, Elsevier, vol. 292(C), pages 51-62.
    3. Shan, Linan & He, Yunfeng & Chen, Jie & Huang, Qian & Lian, Xu & Wang, Hongcai & Liu, Yili, 2015. "Nitrogen surface runoff losses from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China," Agricultural Water Management, Elsevier, vol. 159(C), pages 255-263.
    4. Xu, Junzeng & Peng, Shizhang & Yang, Shihong & Wang, Weiguang, 2012. "Ammonia volatilization losses from a rice paddy with different irrigation and nitrogen managements," Agricultural Water Management, Elsevier, vol. 104(C), pages 184-192.
    5. Ishfaq, Muhammad & Farooq, Muhammad & Zulfiqar, Usman & Hussain, Saddam & Akbar, Nadeem & Nawaz, Ahmad & Anjum, Shakeel Ahmad, 2020. "Alternate wetting and drying: A water-saving and ecofriendly rice production system," Agricultural Water Management, Elsevier, vol. 241(C).
    6. Han, Huanhao & Gao, Rong & Cui, Yuanlai & Gu, Shixiang, 2021. "Transport and transformation of water and nitrogen under different irrigation modes and urea application regimes in paddy fields," Agricultural Water Management, Elsevier, vol. 255(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinyan Liu & Huanhao Han & Shixiang Gu & Rong Gao, 2023. "Effects of Urea Application on Soil Organic Nitrogen Mineralization and Nitrogen Fertilizer Availability in a Rice–Broad Bean Rotation System," Sustainability, MDPI, vol. 15(7), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Peng & Xu, Junzeng & Zhang, Zhongxue & Nie, Tangzhe & Wang, Kechun & Guo, Hang, 2022. "Where the straw-derived nitrogen gone in paddy field subjected to different irrigation regimes and straw placement depths? Evidence from 15N labeling," Agricultural Water Management, Elsevier, vol. 273(C).
    2. Lv, Yuping & Gu, Linhui & Xu, Junzeng & Liu, Xiaoyin, 2024. "A coupled hourly water-carbon flux model at plot and field scales for water-saving irrigated rice paddy," Agricultural Water Management, Elsevier, vol. 293(C).
    3. Liu, Xiaoyin & Xu, Junzeng & Liu, Boyi & Wang, Weiguang & Li, Yawei, 2019. "A novel model of water-heat coupling for water-saving irrigated rice fields based on water and energy balance: Model formulation and verification," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    4. Yan, Jun & Wu, Qixia & Qi, Dongliang & Zhu, Jianqiang, 2022. "Rice yield, water productivity, and nitrogen use efficiency responses to nitrogen management strategies under supplementary irrigation for rain-fed rice cultivation," Agricultural Water Management, Elsevier, vol. 263(C).
    5. Hua, Keji & He, Jun & Liao, Bin & He, Tianzhong & Yang, Peng & Zhang, Lei, 2023. "Multi-objective decision-making for efficient utilization of water and fertilizer in paddy fields: A case study in Southern China," Agricultural Water Management, Elsevier, vol. 289(C).
    6. Han, Huanhao & Gao, Rong & Cui, Yuanlai & Gu, Shixiang, 2021. "Transport and transformation of water and nitrogen under different irrigation modes and urea application regimes in paddy fields," Agricultural Water Management, Elsevier, vol. 255(C).
    7. Nie, Tangzhe & Huang, Jianyi & Zhang, Zhongxue & Chen, Peng & Li, Tiecheng & Dai, Changlei, 2023. "The inhibitory effect of a water-saving irrigation regime on CH4 emission in Mollisols under straw incorporation for 5 consecutive years," Agricultural Water Management, Elsevier, vol. 278(C).
    8. Hasan Mirzakhaninafchi & Manjeet Singh & Anoop Kumar Dixit & Apoorv Prakash & Shikha Sharda & Jugminder Kaur & Ali Mirzakhani Nafchi, 2022. "Performance Assessment of a Sensor-Based Variable-Rate Real-Time Fertilizer Applicator for Rice Crop," Sustainability, MDPI, vol. 14(18), pages 1-25, September.
    9. Mack, Sarah K. & Lane, Robert R. & Deng, Jia & Morris, James T. & Bauer, Julian J., 2023. "Wetland carbon models: Applications for wetland carbon commercialization," Ecological Modelling, Elsevier, vol. 476(C).
    10. Shan, Linan & He, Yunfeng & Chen, Jie & Huang, Qian & Lian, Xu & Wang, Hongcai & Liu, Yili, 2015. "Nitrogen surface runoff losses from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China," Agricultural Water Management, Elsevier, vol. 159(C), pages 255-263.
    11. Kaiwen Chen & Shuang’en Yu & Tao Ma & Jihui Ding & Pingru He & Yao Li & Yan Dai & Guangquan Zeng, 2022. "Modeling the Water and Nitrogen Management Practices in Paddy Fields with HYDRUS-1D," Agriculture, MDPI, vol. 12(7), pages 1-18, June.
    12. Nittaya Cha-un & Amnat Chidthaisong & Kazuyuki Yagi & Sirintornthep Towprayoon, 2021. "Simulating the Long-Term Effects of Fertilizer and Water Management on Grain Yield and Methane Emissions of Paddy Rice in Thailand," Agriculture, MDPI, vol. 11(11), pages 1-22, November.
    13. Martínez-Eixarch, Maite & Alcaraz, Carles & Guàrdia, Mercè & Català-Forner, Mar & Bertomeu, Andrea & Monaco, Stefano & Cochrane, Nicole & Oliver, Viktoria & Teh, Yit Arn & Courtois, Brigitte & Price, , 2021. "Multiple environmental benefits of alternate wetting and drying irrigation system with limited yield impact on European rice cultivation: The Ebre Delta case," Agricultural Water Management, Elsevier, vol. 258(C).
    14. Stephen C. Hagen & Grace Delgado & Peter Ingraham & Ian Cooke & Richard Emery & Justin P. Fisk & Lindsay Melendy & Thomas Olson & Shawn Patti & Nathanael Rubin & Beth Ziniti & Haixin Chen & William Sa, 2020. "Mapping Conservation Management Practices and Outcomes in the Corn Belt Using the Operational Tillage Information System (OpTIS) and the Denitrification–Decomposition (DNDC) Model," Land, MDPI, vol. 9(11), pages 1-23, October.
    15. Zhao, Zheng & Cao, Linkui & Deng, Jia & Sha, Zhimin & Chu, Changbin & Zhou, Deping & Wu, Shuhang & Lv, Weiguang, 2020. "Modeling CH4 and N2O emission patterns and mitigation potential from paddy fields in Shanghai, China with the DNDC model," Agricultural Systems, Elsevier, vol. 178(C).
    16. Wei, Jun & Cui, Yuanlai & Zhou, Sihang & Luo, Yufeng, 2022. "Regional water-saving potential calculation method for paddy rice based on remote sensing," Agricultural Water Management, Elsevier, vol. 267(C).
    17. Ariani, Miranti & Hanudin, Eko & Haryono, Eko, 2022. "The effect of contrasting soil textures on the efficiency of alternate wetting-drying to reduce water use and global warming potential," Agricultural Water Management, Elsevier, vol. 274(C).
    18. Qiu, Rangjian & Li, Longan & Liu, Chunwei & Wang, Zhenchang & Zhang, Baozhong & Liu, Zhandong, 2022. "Evapotranspiration estimation using a modified crop coefficient model in a rotated rice-winter wheat system," Agricultural Water Management, Elsevier, vol. 264(C).
    19. Gao, Ya & Sun, Chen & Ramos, Tiago B. & Huo, Zailin & Huang, Guanhua & Xu, Xu, 2023. "Modeling nitrogen dynamics and biomass production in rice paddy fields of cold regions with the ORYZA-N model," Ecological Modelling, Elsevier, vol. 475(C).
    20. Xinyan Liu & Huanhao Han & Shixiang Gu & Rong Gao, 2023. "Effects of Urea Application on Soil Organic Nitrogen Mineralization and Nitrogen Fertilizer Availability in a Rice–Broad Bean Rotation System," Sustainability, MDPI, vol. 15(7), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:272:y:2022:i:c:s0378377422003882. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.