IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v282y2023ics0378377423001609.html
   My bibliography  Save this article

The long-term effectiveness of biochar in increasing phosphorus availability and reducing its release risk to the environment in water-saving irrigated paddy fields

Author

Listed:
  • Qi, Suting
  • Yang, Shihong
  • Lin, Xiuyan
  • Hu, Jiazhen
  • Jiang, Zewei
  • Xu, Yi

Abstract

Improper management practices lead to the reduction of phosphorus availability by rice and an increase in the risk of phosphorus release to the environment in paddy fields. This study aims at exploring the effects of biochar with the applicated rate of 0, 20, 40 t ha−1 under controlled or flooding irrigation on utilization efficiency of phosphorus fertilizer and phosphorus leaching loss from fields by observing the dynamics of phosphorus in paddy fields throughout the rice growing period. The results indicated that biochar application lessened the TP and DRP leaching loss by 6.77–17.62% and 6.22–10.28% respectively. It was also found that biochar improved the phosphorus efficiency of rice by 5.33–10.33%and reduced the soil phosphorus surplus by 3.45–6.66% for the increased soil Olsen-P concentration and soil solution dissolved reactive P concentration. In comparison with flooding irrigation, controlled irrigation apparently decreased P leaching loss by 34.64–55.15% by controlling the downward migration of phosphorus in soil solution. Although biochar addition in the field increased production cost, it was proved increasing net economic benefit by 2558–4655 yuan ha−1 y−1, which attributes to the increased rice yield in biochar applicated treatment. In order to improve phosphorus efficiency of rice and reduce the risk of phosphorus release to the environment, a combination of biochar and water-saving irrigation applied in rice fields can provide cleaner production of rice with a promising option, thus bringing both environmental and economic benefits.

Suggested Citation

  • Qi, Suting & Yang, Shihong & Lin, Xiuyan & Hu, Jiazhen & Jiang, Zewei & Xu, Yi, 2023. "The long-term effectiveness of biochar in increasing phosphorus availability and reducing its release risk to the environment in water-saving irrigated paddy fields," Agricultural Water Management, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:agiwat:v:282:y:2023:i:c:s0378377423001609
    DOI: 10.1016/j.agwat.2023.108295
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423001609
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108295?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Suting Qi & Jie Ding & Shihong Yang & Zewei Jiang & Yi Xu, 2022. "Impact of Biochar Application on Ammonia Volatilization from Paddy Fields under Controlled Irrigation," Sustainability, MDPI, vol. 14(3), pages 1-16, January.
    2. Ishfaq, Muhammad & Farooq, Muhammad & Zulfiqar, Usman & Hussain, Saddam & Akbar, Nadeem & Nawaz, Ahmad & Anjum, Shakeel Ahmad, 2020. "Alternate wetting and drying: A water-saving and ecofriendly rice production system," Agricultural Water Management, Elsevier, vol. 241(C).
    3. Chen, Yi-min & Zhang, Jin-yuan & Xu, Xin & Qu, Hong-yun & Hou, Meng & Zhou, Ke & Jiao, Xiao-guang & Sui, Yue-yu, 2018. "Effects of different irrigation and fertilization practices on nitrogen leaching in facility vegetable production in northeastern China," Agricultural Water Management, Elsevier, vol. 210(C), pages 165-170.
    4. Taras Lychuk & Roberto Izaurralde & Robert Hill & William McGill & Jimmy Williams, 2015. "Biochar as a global change adaptation: predicting biochar impacts on crop productivity and soil quality for a tropical soil with the Environmental Policy Integrated Climate (EPIC) model," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(8), pages 1437-1458, December.
    5. Zhuang, Yanhua & Zhang, Liang & Li, Sisi & Liu, Hongbin & Zhai, Limei & Zhou, Feng & Ye, Yushi & Ruan, Shuhe & Wen, Weijia, 2019. "Effects and potential of water-saving irrigation for rice production in China," Agricultural Water Management, Elsevier, vol. 217(C), pages 374-382.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Jun & Cui, Yuanlai & Zhou, Sihang & Luo, Yufeng, 2022. "Regional water-saving potential calculation method for paddy rice based on remote sensing," Agricultural Water Management, Elsevier, vol. 267(C).
    2. Chen, Peng & Xu, Junzeng & Zhang, Zhongxue & Nie, Tangzhe & Wang, Kechun & Guo, Hang, 2022. "Where the straw-derived nitrogen gone in paddy field subjected to different irrigation regimes and straw placement depths? Evidence from 15N labeling," Agricultural Water Management, Elsevier, vol. 273(C).
    3. Yan, Jun & Wu, Qixia & Qi, Dongliang & Zhu, Jianqiang, 2022. "Rice yield, water productivity, and nitrogen use efficiency responses to nitrogen management strategies under supplementary irrigation for rain-fed rice cultivation," Agricultural Water Management, Elsevier, vol. 263(C).
    4. Hua, Keji & He, Jun & Liao, Bin & He, Tianzhong & Yang, Peng & Zhang, Lei, 2023. "Multi-objective decision-making for efficient utilization of water and fertilizer in paddy fields: A case study in Southern China," Agricultural Water Management, Elsevier, vol. 289(C).
    5. Yu, Yaze & Jiao, Yan & Yang, Wenzhu & Song, Chunni & Zhang, Jing & Liu, Yubin, 2022. "Mechanisms underlying nitrous oxide emissions and nitrogen leaching from potato fields under drip irrigation and furrow irrigation," Agricultural Water Management, Elsevier, vol. 260(C).
    6. Han, Huanhao & Gao, Rong & Cui, Yuanlai & Gu, Shixiang, 2022. "A semi-empirical semi-process model of ammonia volatilization from paddy fields under different irrigation modes and urea application regimes," Agricultural Water Management, Elsevier, vol. 272(C).
    7. Martínez-Eixarch, Maite & Alcaraz, Carles & Guàrdia, Mercè & Català-Forner, Mar & Bertomeu, Andrea & Monaco, Stefano & Cochrane, Nicole & Oliver, Viktoria & Teh, Yit Arn & Courtois, Brigitte & Price, , 2021. "Multiple environmental benefits of alternate wetting and drying irrigation system with limited yield impact on European rice cultivation: The Ebre Delta case," Agricultural Water Management, Elsevier, vol. 258(C).
    8. Andrade Díaz, Christhel & Albers, Ariane & Zamora-Ledezma, Ezequiel & Hamelin, Lorie, 2024. "The interplay between bioeconomy and the maintenance of long-term soil organic carbon stock in agricultural soils: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    9. Anika Reetsch & Kai Schwärzel & Christina Dornack & Shadrack Stephene & Karl-Heinz Feger, 2020. "Optimising Nutrient Cycles to Improve Food Security in Smallholder Farming Families—A Case Study from Banana-Coffee-Based Farming in the Kagera Region, NW Tanzania," Sustainability, MDPI, vol. 12(21), pages 1-34, November.
    10. Nguyen, Van Thang & Huynh, Nguyen Phong Thu & Vu, Ngoc Ba & Le, Cong Hao, 2021. "Long-term accumulation of 226Ra in some agricultural soils based on model assessment," Agricultural Water Management, Elsevier, vol. 243(C).
    11. Ariani, Miranti & Hanudin, Eko & Haryono, Eko, 2022. "The effect of contrasting soil textures on the efficiency of alternate wetting-drying to reduce water use and global warming potential," Agricultural Water Management, Elsevier, vol. 274(C).
    12. Liu, Jianliang & Huang, Xinya & Jiang, Haibo & Chen, Huai, 2021. "Sustaining yield and mitigating methane emissions from rice production with plastic film mulching technique," Agricultural Water Management, Elsevier, vol. 245(C).
    13. Liu, Lianhua & Ouyang, Wei & Wang, Yidi & Lian, Zhongmin & Pan, Junting & Liu, Hongbin & Chen, Jingrui & Niu, Shiwei, 2023. "Paddy water managements for diffuse nitrogen and phosphorus pollution control in China: A comprehensive review and emerging prospects," Agricultural Water Management, Elsevier, vol. 277(C).
    14. Sisi Li & Yanhua Zhuang & Hongbin Liu & Zhen Wang & Fulin Zhang & Mingquan Lv & Limei Zhai & Xianpeng Fan & Shiwei Niu & Jingrui Chen & Changxu Xu & Na Wang & Shuhe Ruan & Wangzheng Shen & Menghan Mi , 2023. "Enhancing rice production sustainability and resilience via reactivating small water bodies for irrigation and drainage," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Wenjiang Jing & Hao Wu & Hanzhu Gu & Zhilin Xiao & Weilu Wang & Weiyang Zhang & Junfei Gu & Lijun Liu & Zhiqin Wang & Jianhua Zhang & Jianchang Yang & Hao Zhang, 2022. "Response of Grain Yield and Water Use Efficiency to Irrigation Regimes during Mid-Season indica Rice Genotype Improvement," Agriculture, MDPI, vol. 12(10), pages 1-18, October.
    16. Liang, Kaiming & Zhong, Xuhua & Fu, Youqiang & Hu, Xiangyu & Li, Meijuan & Pan, Junfeng & Liu, Yanzhuo & Hu, Rui & Ye, Qunhuan, 2023. "Mitigation of environmental N pollution and greenhouse gas emission from double rice cropping system with a new alternate wetting and drying irrigation regime coupled with optimized N fertilization in," Agricultural Water Management, Elsevier, vol. 282(C).
    17. Luo, Wanqi & Chen, Mengting & Kang, Yinhong & Li, Wenping & Li, Dan & Cui, Yuanlai & Khan, Shahbaz & Luo, Yufeng, 2022. "Analysis of crop water requirements and irrigation demands for rice: Implications for increasing effective rainfall," Agricultural Water Management, Elsevier, vol. 260(C).
    18. Liu, Jing & Bi, Xiaoqing & Ma, Maoting & Jiang, Lihua & Du, Lianfeng & Li, Shunjiang & Sun, Qinping & Zou, Guoyuan & Liu, Hongbin, 2019. "Precipitation and irrigation dominate soil water leaching in cropland in Northern China," Agricultural Water Management, Elsevier, vol. 211(C), pages 165-171.
    19. Andrade Díaz, Christhel & Clivot, Hugues & Albers, Ariane & Zamora-Ledezma, Ezequiel & Hamelin, Lorie, 2023. "The crop residue conundrum: Maintaining long-term soil organic carbon stocks while reinforcing the bioeconomy, compatible endeavors?," Applied Energy, Elsevier, vol. 329(C).
    20. Zhu, Rui & Hu, Tiesong & Wu, Fengyan & Liu, Yong & Zhou, Shan & Wang, Yanxuan, 2023. "Photosynthetic and hydraulic changes caused by water deficit and flooding stress increase rice’s intrinsic water-use efficiency," Agricultural Water Management, Elsevier, vol. 289(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:282:y:2023:i:c:s0378377423001609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.