IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v208y2018icp193-203.html
   My bibliography  Save this article

Development of an integrated hydrological-irrigation optimization modeling system for a typical rice irrigation scheme in Central Vietnam

Author

Listed:
  • Dang, T.
  • Pedroso, R.
  • Laux, P.
  • Kunstmann, H.

Abstract

In Central Vietnam, farmers report an increasing occurrence frequency of water shortages for irrigation during dry seasons. Particularly during the summer-autumn rice season, water is often insufficient to irrigate the entire rice production areas, and thus restricting rice productivity significantly. In this study, a coupled hydrological-irrigation optimization modelling system is developed to optimize irrigation strategies for a typical rice irrigation system in Central Vietnam. The model consists of a fully distributed hydrologic model, which simulates the inflow to a reservoir, and an irrigation model, which optimizes the rice irrigation technology, i.e. Alternate Wetting and Drying (AWD) or Continuous Flooding (CF), irrigation schedule and cropping area under given water constraints. Irrigation strategies are derived based on different initial reservoir water levels at the beginning of the cropping season as well as different maximum water releases. The simulation results show that the initial level of water in the reservoir is crucial: Water levels of less than 90% do not provide sufficient water to irrigate the entire cropping area, whereas a level of 70% restricts the cropping area to 75%. AWD is able to reduce the water input, ranging from 4% to 10%. The adoption of AWD therefore has the potential to irrigate a larger area and may help to increase the profit of the farmers. However, the benefits of AWD can only be achieved after significant investment in the canal system and the reservoir outlet. Since the robustness of the optimization results (performance variability) is crucial for decision support, we estimated the impact of different computing environments on the solutions. Only limited performance variability is found, giving confidence in the robustness of the model for decision support.

Suggested Citation

  • Dang, T. & Pedroso, R. & Laux, P. & Kunstmann, H., 2018. "Development of an integrated hydrological-irrigation optimization modeling system for a typical rice irrigation scheme in Central Vietnam," Agricultural Water Management, Elsevier, vol. 208(C), pages 193-203.
  • Handle: RePEc:eee:agiwat:v:208:y:2018:i:c:p:193-203
    DOI: 10.1016/j.agwat.2018.05.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418306528
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.05.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Y. H., 2001. "Research and practice of water saving irrigation for rice in China," Conference Papers h027868, International Water Management Institute.
    2. Liang, Kaiming & Zhong, Xuhua & Huang, Nongrong & Lampayan, Rubenito M. & Pan, Junfeng & Tian, Ka & Liu, Yanzhuo, 2016. "Grain yield, water productivity and CH4 emission of irrigated rice in response to water management in south China," Agricultural Water Management, Elsevier, vol. 163(C), pages 319-331.
    3. Rosegrant, M. W. & Ringler, C. & McKinney, D. C. & Cai, X. & Keller, A. & Donoso, G., 2000. "Integrated economic-hydrologic water modeling at the basin scale: the Maipo river basin," Agricultural Economics, Blackwell, vol. 24(1), pages 33-46, December.
    4. Belder, P. & Bouman, B. A. M. & Cabangon, R. & Guoan, Lu & Quilang, E. J. P. & Yuanhua, Li & Spiertz, J. H. J. & Tuong, T. P., 2004. "Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia," Agricultural Water Management, Elsevier, vol. 65(3), pages 193-210, March.
    5. Barker, R. & Loeve, R. & Li, Y. H. & Tuong, T. P., 2001. "Water-saving irrigation for rice: proceedings of an international workshop held in Wuhan, China, 23-25 March 2001," Conference Proceedings h029238, International Water Management Institute.
    6. Bueno, C.S. & Bucourt, M. & Kobayashi, N. & Inubushi, K. & Lafarge, T., 2010. "Water productivity of contrasting rice genotypes grown under water-saving conditions in the tropics and investigation of morphological traits for adaptation," Agricultural Water Management, Elsevier, vol. 98(2), pages 241-250, December.
    7. Bouman, B.A.M. & Peng, S. & Castaneda, A.R. & Visperas, R.M., 2005. "Yield and water use of irrigated tropical aerobic rice systems," Agricultural Water Management, Elsevier, vol. 74(2), pages 87-105, June.
    8. Tabbal, D. F. & Bouman, B. A. M. & Bhuiyan, S. I. & Sibayan, E. B. & Sattar, M. A., 2002. "On-farm strategies for reducing water input in irrigated rice; case studies in the Philippines," Agricultural Water Management, Elsevier, vol. 56(2), pages 93-112, July.
    9. Rejesus, Roderick M. & Palis, Florencia G. & Rodriguez, Divina Gracia P. & Lampayan, Ruben M. & Bouman, Bas A.M., 2011. "Impact of the alternate wetting and drying (AWD) water-saving irrigation technique: Evidence from rice producers in the Philippines," Food Policy, Elsevier, vol. 36(2), pages 280-288, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoping Chen & Shaoyuan Feng & Zhiming Qi & Matthew W. Sima & Fanjiang Zeng & Lanhai Li & Haomiao Cheng & Hao Wu, 2022. "Optimizing Irrigation Strategies to Improve Water Use Efficiency of Cotton in Northwest China Using RZWQM2," Agriculture, MDPI, vol. 12(3), pages 1-15, March.
    2. Luo, Wanqi & Chen, Mengting & Kang, Yinhong & Li, Wenping & Li, Dan & Cui, Yuanlai & Khan, Shahbaz & Luo, Yufeng, 2022. "Analysis of crop water requirements and irrigation demands for rice: Implications for increasing effective rainfall," Agricultural Water Management, Elsevier, vol. 260(C).
    3. Chen, Xiaoping & Qi, Zhiming & Gui, Dongwei & Sima, Matthew W. & Zeng, Fanjiang & Li, Lanhai & Li, Xiangyi & Gu, Zhe, 2020. "Evaluation of a new irrigation decision support system in improving cotton yield and water productivity in an arid climate," Agricultural Water Management, Elsevier, vol. 234(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belder, P. & Bouman, B. A.M. & Spiertz, J.H.J., 2007. "Exploring options for water savings in lowland rice using a modelling approach," Agricultural Systems, Elsevier, vol. 92(1-3), pages 91-114, January.
    2. Ishfaq, Muhammad & Farooq, Muhammad & Zulfiqar, Usman & Hussain, Saddam & Akbar, Nadeem & Nawaz, Ahmad & Anjum, Shakeel Ahmad, 2020. "Alternate wetting and drying: A water-saving and ecofriendly rice production system," Agricultural Water Management, Elsevier, vol. 241(C).
    3. Liang, Kaiming & Zhong, Xuhua & Huang, Nongrong & Lampayan, Rubenito M. & Pan, Junfeng & Tian, Ka & Liu, Yanzhuo, 2016. "Grain yield, water productivity and CH4 emission of irrigated rice in response to water management in south China," Agricultural Water Management, Elsevier, vol. 163(C), pages 319-331.
    4. Monaco, Federica & Sali, Guido, 2018. "How water amounts and management options drive Irrigation Water Productivity of rice. A multivariate analysis based on field experiment data," Agricultural Water Management, Elsevier, vol. 195(C), pages 47-57.
    5. Bueno, C.S. & Bucourt, M. & Kobayashi, N. & Inubushi, K. & Lafarge, T., 2010. "Water productivity of contrasting rice genotypes grown under water-saving conditions in the tropics and investigation of morphological traits for adaptation," Agricultural Water Management, Elsevier, vol. 98(2), pages 241-250, December.
    6. Patel, D.P. & Das, Anup & Munda, G.C. & Ghosh, P.K. & Bordoloi, Juri Sandhya & Kumar, Manoj, 2010. "Evaluation of yield and physiological attributes of high-yielding rice varieties under aerobic and flood-irrigated management practices in mid-hills ecosystem," Agricultural Water Management, Elsevier, vol. 97(9), pages 1269-1276, September.
    7. Cabangon, R. J. & Tuong, T. P. & Lu, G. & Bouman, B. A. M. & Feng, Y. & Zhichuan, Z. & Chen, C. D. & Wang, J. C., 2003. "Irrigation management effects on yield and water productivity of hybrid, inbred and aerobic rice varieties in China," IWMI Books, Reports H033346, International Water Management Institute.
    8. Xiaoguang, Yang & Bouman, B.A.M. & Huaqi, Wang & Zhimin, Wang & Junfang, Zhao & Bin, Chen, 2005. "Performance of temperate aerobic rice under different water regimes in North China," Agricultural Water Management, Elsevier, vol. 74(2), pages 107-122, June.
    9. Yu, Qianan & Cui, Yuanlai, 2022. "Improvement and testing of ORYZA model water balance modules for alternate wetting and drying irrigation," Agricultural Water Management, Elsevier, vol. 271(C).
    10. Ian A. Navarrete & Victor B. Asio, 2014. "Research productivity in soil science in the Philippines," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(1), pages 261-272, July.
    11. Cesari de Maria, Sandra & Rienzner, Michele & Facchi, Arianna & Chiaradia, Enrico Antonio & Romani, Marco & Gandolfi, Claudio, 2016. "Water balance implications of switching from continuous submergence to flush irrigation in a rice-growing district," Agricultural Water Management, Elsevier, vol. 171(C), pages 108-119.
    12. Borin, José Bernardo Moraes & Carmona, Felipe de Campos & Anghinoni, Ibanor & Martins, Amanda Posselt & Jaeger, Isadora Rodrigues & Marcolin, Elio & Hernandes, Gustavo Cantori & Camargo, Estefânia Sil, 2016. "Soil solution chemical attributes, rice response and water use efficiency under different flood irrigation management methods," Agricultural Water Management, Elsevier, vol. 176(C), pages 9-17.
    13. Schneider, Pia & Sander, Bjoern Ole & Wassmann, Reiner & Asch, Folkard, 2019. "Potential and versatility of WEAP model (Water Evaluation and Planning System) for hydrological assessments of AWD (Alternate Wetting and Drying) in irrigated rice," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    14. Feng, Liping & Bouman, B. A.M. & Tuong, T.P. & Cabangon, R.J. & Li, Yalong & Lu, Guoan & Feng, Yuehua, 2007. "Exploring options to grow rice using less water in northern China using a modelling approach: I. Field experiments and model evaluation," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 1-13, March.
    15. Belder, P. & Bouman, B. A. M. & Cabangon, R. & Guoan, Lu & Quilang, E. J. P. & Yuanhua, Li & Spiertz, J. H. J. & Tuong, T. P., 2004. "Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia," Agricultural Water Management, Elsevier, vol. 65(3), pages 193-210, March.
    16. Xu, Junzeng & Peng, Shizhang & Yang, Shihong & Wang, Weiguang, 2012. "Ammonia volatilization losses from a rice paddy with different irrigation and nitrogen managements," Agricultural Water Management, Elsevier, vol. 104(C), pages 184-192.
    17. Tuong, T. P. & Bouman, B. A. M., 2003. "Rice production in water-scarce environments," IWMI Books, Reports H032635, International Water Management Institute.
    18. Manel Ben Hassen & Federica Monaco & Arianna Facchi & Marco Romani & Giampiero Valè & Guido Sali, 2017. "Economic Performance of Traditional and Modern Rice Varieties under Different Water Management Systems," Sustainability, MDPI, vol. 9(3), pages 1-10, February.
    19. Ye, Qing & Yang, Xiaoguang & Dai, Shuwei & Chen, Guangsheng & Li, Yong & Zhang, Caixia, 2015. "Effects of climate change on suitable rice cropping areas, cropping systems and crop water requirements in southern China," Agricultural Water Management, Elsevier, vol. 159(C), pages 35-44.
    20. Martínez-Eixarch, Maite & Alcaraz, Carles & Guàrdia, Mercè & Català-Forner, Mar & Bertomeu, Andrea & Monaco, Stefano & Cochrane, Nicole & Oliver, Viktoria & Teh, Yit Arn & Courtois, Brigitte & Price, , 2021. "Multiple environmental benefits of alternate wetting and drying irrigation system with limited yield impact on European rice cultivation: The Ebre Delta case," Agricultural Water Management, Elsevier, vol. 258(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:208:y:2018:i:c:p:193-203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.